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ABSTRACT 

In the electrical network, transfer and driving-point functions 

have, in the past, been designed and implemented by using either passive 

elements or a combination of active and passive elements. 

network functions possess such problems as drift, unsteady gain, and 

temperature sensitivity, causing variations from the desired response. 

In this report, an alternative digital approach is suggested which 

could overcome these problems. 

These analog 

General-purpose digital computers have been utilized to numerically 

generate transfer functions using sampled digital data provided by analog- 

to-digital converters. Because of the limitation on operating speed of 

the central processor, a typical general-purpose computer can realize only 

real-time digital filters with input frequencies up to a few kilohertz. 

In addition, this type of computer is too complex and costly to be widely 

used as a replacement f o r  analog filters in most electronic systems. 

To permit the implementation of both transfer and driving-point 

functions, a pair of integrated-circuit digital building blocks are pro- 

posed. These are a digital increment integrator module and a digital in- 
crement summing module to be used as the building blocks to replace all 

or the majority of all possible electrical components and networks. The 

choice of these two types of semi-universal modules rather than one uni- 

versal module is justified by a minimum-cost criterion. 

Three synthesis methods and their performance errors are presented 

and compared, from which one procedure is deduced to yield a network 

function with a minimum number of modules as well as best performance. 

All data transfer among the digital modules is in digital increments. 

Therefore, the analog-to-digital incremental converter is used at the in- 

put terminal. This results in faster conversion and better accuracy than 

the analog-to-digital converter. 

In the internal design of the digital modules, a signed-digit number 

system is used to eliminate the carry-propagation time, and a modified 

trapezoidal rule is introduced to perform high-speed integration. With 

the help of large-scale integration, the complexity of the two proposed 
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modules is on the o rde r  of a few hundred l o g i c a l  AND-OR ga te s ,  and var i -  

ab le  p rec i s ion  can be achieved by cascading t h e  modules together .  With 

an accuracy of 0.1 percent ,  t h e  input  frequency can be handled up to  

100 kHz a t  a c lock r a t e  of 10 MHz, or up t o  1 MHz with a 1-percent 

accuracy. 
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Chapter I 

INTRODUCTION 

Discrete s i g n a l  processing by l i n e a r  f i l t e r s  or weighting sequences 

o r ig ina t ed  i n  the  e a r l y  1600's wi th  t h e  work of'mathematicians who con- 

s t r u c t e d  mathematical t a b l e s  and with astronomers who were concerned with 

the  determinat ion of t h e  o r b i t s  of heavenly bodies.  The works of Napier, 

Newton, t he  Bernoul l i s ,  E u l e r ,  Lagrange, Laplace, and Gauss are evident  

i n  the  c l a s s i c a l  numerical ana lys i s  techniques used even today f o r  num- 

erical i n t e g r a t i o n ,  i n t e r p o l a t i o n ,  d i f f e r e n t i a t i o n ,  and so on. The 

h i s t o r i c a l  development of d i g i t a l  f i l t e r i n g  w a s  thoroughly described by 

Kaiser [Ref. 11. In  recent  publ ica t ions  [Refs. 1 , 2 , 3 ,  and 41, the  bas i c  

p r i n c i p l e  i n  the design of real-time d i g i t a l  f i l t e r s  is t h a t  the  analog 

input  s i g n a l  undergoes the process of spectrum shaping then feeds through 

d i g i t a l  hardware. In t h i s  hardware, a general-purpose computer is  u t i -  

l i z e d  t o  perform such opera t ions  as de lay ,  s to rage ,  addi t ion ,  sub t r ac t ion ,  

and mul t ip l i ca t ion  i n  such a way a s  t o  s a t i s f y  a set of spec i f i ed  d i f f e r -  

ence equat ions between input  and output.  In  o t h e r  words, the d i g i t a l  

ou tput  of the computer, a f t e r  a set  of ca l cu la t ions ,  and the  d i g i t a l  

input  t o  t h e  computer s a t i s f y  a spec i f i ed  t r a n s f e r  funct ion i n  z-transform, 

which can be obtained by d i r e c t  t ransformation from the  Laplace transform. 

From the  t r a n s f e r  func t ion ,  a set of d i f f e rence  equations can be found 

and executed on the  d i g i t a l  computer; the da ta  output can be co l l ec t ed  

as the  f i n a l  ou tput ,  and t h e  t r a n s f e r  funct ion of a d i g i t a l  f i l t e r  is  

realized. T h i s  technique of f i l t e r i n g  by implementation of d i f f e rence  

equat ions is  s o m e t i m e s  r e f e r r e d  t o  a s  "recursive f i l t e r i n g "  ( i f  the  

present  v a l u e  of t he  output depends not  only on t h e  present  and pas t  

v a l u e s  of t h e  inpu t  bu t  a l s o  on t h e  previous v a l u e s  of the  output)  or 

"nonrecursive f i l t e r i n g "  ( i f  t he  present  v a l u e  of t he  output  does not 

depend on the previous v a l u e s  of t h e  output) .  See Ref. 1. 

Computer implementation has gained much a t t e n t i o n  [Refs. 1 , 3 , 4 ,  and 

51, and many programs have been w r i t t e n  t o  implement d i g i t a l  f i l t e r s .  

Because of t h e  f a i r l y  slow opera t ing  speed of the  central-processor  

u n i t ,  t h e  numerical c a l c u l a t i o n  performed by the arithmetic u n i t  can 
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only r e a l i z e  those real-time d i g i t a l  f i l t e r s  t h a t  handle an input  s i g n a l  

frequency up t o  a few k i lohe r t z .  Furthermore, c e r t a i n  spacecraf t  appl i -  

ca t ions  where s m a l l  s i z e  and l i g h t  weight are extremely important,  com- 

pu ter  s imulat ion is  imprac t ica l .  

The motivation f o r  t h i s  i nves t iga t ion  is  based on the  following 

quest ions:  Can w e  apply a d i g i t a l  technique o t h e r  than computer s imu-  

l a t i o n  t o  realize analog networks? 

in t eg ra t ed  un ive r sa l  or semi-universal  d i g i t a l  module t o  be used as the  

only bui ld ing  block f o r  replacement of a l l  or t h e  majori ty  of poss ib le  

e l e c t r i c a l  components and networks? Can w e  develop a synthes is  procedure 

which would r e s u l t  i n  a network having a minimum number of d i g i t a l  modules 

with b e s t  poss ib l e  performance? How can the  speed of t h e  u n i v e r s a l  

d i g i t a l  module be increased t o  t h e  domain of real time? How can the  

accuracy of t h e  network be improved, or can the p rec i s ion  be var ied  t o  

f i t  our  d i f f e r e n t  needs? 

Can w e  cons t ruc t  a s m a l l ,  l ight-weight ,  

A f e a s i b i l i t y  s t u d y ,  answering some of these quest ions,  has been 

reported [ R e f .  61, where it w a s  shown t h a t  t he  r e a l i z a t i o n  of t r a n s f e r  

and immittance func t ions  by d i g i t a l  bu i ld ing  blocks can be done. A 

d i g i t a l  i n t e g r a t o r  (a device containing d i g i t a l  bu i ld ing  blocks such as 

r e g i s t e r s ,  adders ,  and l o g i c  ga t e s  which perform d i g i t a l  i n t eg ra t ion )  . 
was used as the bas i c  bui ld ing  block f o r  the  r e a l i z a t i o n  of the  t r a n s f e r  

and dr iving-point  func t ions ;  t he re fo re ,  t he  mathematical models were 

d i f f e r e n t i a l  r a t h e r  than d i f f e rence  equations.  Although t h e  Laplace 

t ransformation was used t o  spec i fy  the t r a n s f e r  and driving-point func-. 

t i o n s ,  t he  outputs  w e r e  not  p rec i se ly  t h e  same as  those outputs  spec i f i ed  

by t h e  t ransformation.  However, they a r e  e s s e n t i a l l y  a very good approx- 

imation and are compatible w i t h  the continuous (analog) type of network. 

D i g i t a l  increments are the only da t a  t r ans fe r r ed  between the  d i g i t a l  

i n t e g r a t o r s  and the  summing elements. By t h i s  means, much s h o r t e r  t i m e  

i s  needed, compared t o  t r a n s f e r r i n g  the f u l l  word. I f  an analog s igna l  

only is  a v a i l a b l e  a t  the inpu t ,  a device called analog-to-digi ta l  incre- 

mental converter  (ADIC) can be used, which converts  the analog d i f fe rence  

of t h e  present  and previous analog inputs  to d i g i t a l  increments whereby 

higher  accuracy and f a s t  conversion t i m e  is  achieved. More w i l l  be said 

concerning the ADIC i n  Appendix A. 
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I f  incremental  analog-to-digi ta l  and digi ta l - to-analog converters  

(DAC) are a v a i l a b l e ,  a l l  dr iving-point  funct ions can be r ea l i zed  by us ing  

d i g i t a l  elements only.  I t  w a s  also hoped t h a t  both ADIC and DAC could 

be in t eg ra t ed  because a l l  dr iving-point  funct ions could then be in tegra ted  

without d i f f i c u l t y ,  and the d i g i t a l  equiva len t  of high Q inductors  or 

high-capacity capac i to r s  could be  made ava i l ab le .  

Pr ince and Sendzuk [Ref. 71 presented a paper descr ib ing  how d i g i t a l  

f i l t e r s  can be b u i l t  by us ing  MOS (metal-oxide s i l i c o n )  ch ips ;  however, 

t he  inherent  slow speed of MOS makes these  f i l t e r s  impossible f o r  real- 

t i m e  appl ica t ion .  

Recent progress  i n  la rge-sca le  in t eg ra t ion  (LSI) techniques advances 

t h e o r e t i c a l  assumptions w e l l  along t h e  way toward r e a l i t y  [Ref. SI. 

(LSI r e f e r s  t o  complexity l e v e l s  g rea t e r  than 100 c i r c u i t s . )  To take  

f u l l  advantage of t hese  techniques,  l og ic  func t ions  can be complicated 

t o  such a n  e x t e n t  t h a t  as many ga te s  as poss ib le  can be contained on a 

module, sub jec t  only to  a minimum-cost cons t r a in t .  With these consid- 

e r a t i o n s  i n  mind, t he  idea  of us ing  universa l  modules as bas i c  bui ld ing  

blocks t o  realize any real-time c i r cu i t s ,  such as c i r c u i t s  formed by 

any combination of R,  L, C elements (and many o the r s  formed beyond the 

r e s t r i c t i o n s  of R ,  L,  C e lements) ,  can be accomplished. 

To opera te  as a real-time sys tem,  the c i r c u i t r i e s  involved i n  the  

d i g i t a l  modules m u s t  be very high speed. Therefore,  high-speed c i r c u i t r y  

is needed, combined w i t h  a para l le l -opera ted  arithmetic u n i t  t h a t  has 

minimum poss ib le  carry propagation. To perform t h i s  high-speed d i g i t a l  

i n t e g r a t i o n ,  and a f t e r  t h e  f a i l u r e  of a l l  classical methods, a modified 

t rapezoida l  i n t e g r a t i o n  technique is  derived. Parallel operat ion r equ i r e s  

too many input-output p ins ,  which w i l l  g r e a t l y  increase  the  c o s t  of t he  

module; however, a minimum-cost c r i t e r i o n  has been introduced as a j u s -  

t i f i c a t i o n .  A nonconventional redundant number system, c a l l e d  the  signed- 

d i g i t  number system [Refs. 9 and 101, is  used i n  the design of the  d i g i t a l  

modules, where the carry-propagation chain is  el iminated a t  the  expense 

of using more complicated log ic .  The problem of the  var iable-precis ion 

scheme w a s  also resolved.  With a clock rate of  20 M H z ,  the  input  s i g n a l  

frequency can be handled up t o  a few hundred k i l o h e r t z  with an accuracy 

of 0.1 percent ,  which is, of course, more than s u f f i c i e n t  for networks. 
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A s  is  known i n  network theory,  v a r i a t i o n s  of parameters,  a s  indi-  

v idua l  ampl i f i e r  ga ins ,  o f t e n  r e s u l t  i n  small v a r i a t i o n s  i n  t he  response 

of the cascade s t r u c t u r e  because t h e  h igh  number of feedback paths  i n  

the  noncascade s t r u c t u r e  is reduced to  one or two i n  cascade form [Ref. 

111. Consequently, the s e n s i t i v i t y  performance is  o f t e n  improved by 

f a c t o r i n g  t h e  t r a n s f e r  func t ion  i n t o  terms, each having a degree of one 

or two. A performance s tudy i n  t h e  d i g i t a l  domain has been c a r r i e d  ou t  

by Knowles and Edwards [Ref. 121 and Knowles and Olcayto [Ref. 131. 
Thei r  r e s u l t s  i n d i c a t e  t h a t  the cascade form of d i g i t a l  r e a l i z a t i o n  ex- 

h i b i t s  somewhat less performance e r r o r  than t h e  p a r a l l e l  and d i r e c t  

forms . 
The syn thes i s  method of d i g i t a l  r e a l i z a t i o n  of network funct ions 

us ing  the two types of proposed semi-universal  d i g i t a l  modules ( d i g i t a l -  

i n t e g r a t i n g  and digital-summing elements) i s  given. H e r e ,  op t imiza t ion ,  

based on the minimum-cost c r i t e r i o n ,  i nd ica t e s  i t s  choice ,  which coincides  

w i t h  t h e  best-performance choice mentioned earlier.  

With f u r t h e r  advancement i n  LSI techniques,  a l l  R , L , C  elements and 

t h e i r  combined c i r c u i t s  could be  replaced by t h e  above two types of 

modules i n  which a l l  electrical  c i r c u i t s ,  l i n e a r  or nonlinear ,  t i m e -  

v a r i a n t  or t ime-invariant ,  can be designed by us ing  these  two s e m i -  

un ive r sa l  elements only. The negat ive elements can be r e a l i z e d  as w e l l .  

Chapter 11 desc r ibes  the  p r i n c i p l e s  of d i g i t a l  i n t e g r a t i o n  and 

expla ins  how t h e  d i g i t a l  i n t e g r a t o r  is operated and implemented, Also 

included is  a b r i e f  d i scuss ion  of the classical numerical methods and . 
t h e i r  drawbacks under f a s t  ope ra t ing  speed, r e s u l t i n g  i n  t h e  modif icat ion 

of  t he  classical t r apezo ida l  method o f  i n t eg ra t ion .  

Chapter I11 discusses  opt imiza t ion  of t h e  d i g i t a l  modules with 

emphasis on t h e i r  app l i ca t ion  t o  the  network funct ions.  This opt imizat ion 

i s  based on f a s t  speed, va r i ab le  p rec i s ion ,  and minimum cos t .  The signed- 

d i g i t  number system and a modified scheme of t r apezo ida l  i n t e g r a t i o n  are 

u t i l i z e d  t o  implement t h e  d i g i t a l  modules. Two types of modules, i . e . ,  

d i g i t a l  var iab le-prec is ion- in tegra t ing  and summing elements,  are proposed 

as the semi-universal  modules for network-function r e a l i z a t i o n .  

Chapter I V  covers the  d i g i t a l  r e a l i z a t i o n  of t he  t r a n s f e r  func t ion  

by us ing  t h e  two-element modules, and syn thes i s  methods are discussed. 
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The syn thes i s  procedure,  which would r e s u l t  i n  a network r e a l i z a t i o n  

containing a minimum number of d i g i t a l  modules with the  b e s t  performance, 

is  a l s o  given. 

Chapter V i l l u s t r a t e s  some app l i ca t ions  of t h e  d i g i t a l  r e a l i z a t i o n  

of t r a n s f e r  func t ions ;  i n  p a r t i c u l a r ,  d i g i t a l  f i l t e r s ,  t he  d i g i t a l  spec- 

t r u m  ana lyzer ,  and d i g i t a l  f i l t e r s  wi th  time-varying c o e f f i c i e n t s  are 

discussed and examples are given. 

Chapter V I  p resents  the  p o s s i b i l i t y  of d i g i t a l  r e a l i z a t i o n  of driving- 

po in t  immittance func t ions ,  i .e . ,  impedance and admittance funct ions.  

Chapter V I 1  summarizes the  r e s u l t s  and suggests  a r eas  f o r  fu r the r  

research.  
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Chapter I1 

DIGITAL INTEGRATION 

A. P r inc ip l e s  of Digital  In t eg ra t ion  

I n  the  method of numerical i n t e g r a t i o n ,  a given func t ion  can be 

approximated by some polynomial over  a s h o r t  i n t e r v a l  T, following 

which the  polynomial r a t h e r  than t h e  o r i g i n a l  given func t ion  is  in t eg ra t ed ,  

1. Classical Numerical-Integration Methods 

The most f requent ly  used classical methods are rec tangular  and 

- t r a p e z o i d a l  i n t e g r a t i o n  r u l e s  [ R e f s .  14 and 151. 

a. Rectangular In t eg ra t ion  

Suppose t h a t  the i n t e g r a l  of a given func t ion  y = f ( x )  

needs to  be found. T h i s  i n t e g r a l  r ep resen t s  t h e  area bounded by the 

curve y = f ( x )  and the absc i s sa ,  bu t  it can be approximated as the  sum 

of the areas of t h e  elementary rec tangles .  The height  of each of t h e  

r ec t ang le s  is  t h e  cu r ren t  o rd ina te  y and the base is t h e  increment bx 

of t h e  independent v a r i a b l e  x ;  each increment i s  obtained by d iv id ing  

t h e  e n t i r e  range of x i n t o  equal  increments. A s  shown i n  Fig. 1, t h e  

i n t e g r a l  z is  found t o  be 

i=n i=n  
y i k i  + Ro = (2.1) 1 , y i k i  + ~o 

i =1 
c z =LX y dx = l i m  

n - ) w  
0 i=l 

where y = f ( x ) ,  yi = f ( x i ) ,  and Ro is t h e  i n i t i a l  value of t he  

i n t e g r a l .  

i + l  Ax. = x  
1 

- x  
i 

is the  increment of t h e  independent va r i ab le  x. I f  w e  make hi = T, 

then 

i=n 
z -  1 y i T + R  

0 
i=l 

(2.3) 
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To compute t h e  i n t e g r a l ,  

i t  is  s u f f i c i e n t  to  add a l l  t h e  ordi-  

na t e s  corresponding t o  each of t h e  Y =fad 

xo zl 

elementary rec tangles .  Consequently, 

t he  i n t e g r a t i o n  procqss reduces t o  a 

summation of t h e  members represent ing  

those  ord ina tes .  Each o rd ina te  is  

equal  t o  t h e  preceding one, p lus  (or 

minus) t he  o rd ina te  increment 
X 

“mi 

Fig. 1. RECTANGULAR INTEGRATION. for t he  i n t e r v a l  Axi = x - 
i+l 

can be ’i Thus ,  t he  value of 

puted by adding & t o  each preceding ord ina te .  For example, 
i 

mi  
i’ 

com- 

X 

Y1 = Yo + 4Yl 

Y2 = Y1 + 4Y2 

Hence, i t  i s  seen  t h a t  t h e  cu r ren t  v a l u e  of y can be obtained by ac- i 
cumulating a l l  increments of t h e  o r d i n a t e  up t o  mi. 

If Axi = T, then i n  the d i f f e rence  equat ion,  the  rec- 

tangular  i n t e g r a t i o n  performs 

k \ = the area accumulated from x up t o  x 
0 

where 

k = t he  o rd ina te  a t  x 
’k 

or i n  terms of t h e  z-transform, 

ra t io  of  Z[: 1 to  ZCy,l is % 
t h e  t r a n s f e r  func t ion  H ( z )  defined as the 

H ( z )  = 
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b. Trapezoidal In t eg ra t ion  

The e r r o r  i n  rec tangular  i n t eg ra t ion  can be reduced by 

using t h e  t rapezoida l  r u l e ,  where the  c u r v e  y = f ( x )  a t  each i n t e r v a l  

Lbr i s  approximated by a chord, This r u l e  i s  equivalent  to  a summation 

of t h e  areas of "mean" rec tangles ;  as shown i n  Fig. 2 ,  each rect 

has a mean o rd ina te  approximated by 

The increment of t he  i n t e g r a l  ( t h e  area of an elementary rec tangle)  is  

X 
0 

Fig, 2. TRAPEZOIDAL INTEGRATION. 

I f  the  t rapezoida l - in tegra t ion  method is employed, t he  

i n t e g r a l  i s  approximated by 

yn-l 2 + y9 X x n - xo (Yo + Y1 Y1 + Y2 + ... + 2 + n 2 f (x)  dx fi: 

0 

- - n - xo (0 ; yn + y1 + y2 + ... 
n 
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If nX = T, the trapezoidal integration performs 

or in terms of the z-transform, 

2. Modified Trapezoidal Integration 

I For a fast-integration algorithm, it is required that % and 

yk of Eq. (2.8) be calculated at the'same time, but y must be avail- 

able when % is to be executed. Therefore, Eq. (2.8) states an unreal- 

izable algorithm, and all available numerical-integration rules [Ref. 141 

are unrealizable under the assumption of fast operation. 

k 

A modified trapezoidal-integration algorithm can provide a 

method of fast integration: \ 

(2. loa) 

As indicated previously, T is the sampling interval (the period between 

two clock pulses). yk and Rk are present values of the coordinate 

and the area, respectively, and Yk is the content of the Y register 

at t = kT. It is seen also that R and Yk can always be formed at k 
the same time; therefore, the modified-trapezoidal integration algorithm 

is realizable. Modification is based on the condition that the trape- 
zoidal correction is introduced at a 1-bit time later. 

The integration performed by Eq. (2.10) is shown in Fig. 3, and 

the differences between it and Fig. 4, as shown by the shaded area, can 

be observed. 

unknown prior to the start of integration, then the integration by 

the trapezoidal rule (tr) of Eq. (2.8) and by the modified trapezoidal 

rule (mtr) ofEq. (2.10) differs by asmall triangular area T(y -~~-~)/2, or  

If yo = 0 or the Y register has been set to zero for 

k 

SEL-68-084 10 



(2.11) 

/kT  

Fig. 3. MODIFIED TRAPEZOIDAL INTEGRATION, EQ. (2. lo). 

0 T 2T 

Fig. 4. TRAPEZOIDAL INTEGRATION, EQ. ( 2 . 8 ) .  

If the  i n i t i a l  condi t ion  yo # 0 is  known a t  t h e  beginning of 

i n t e g r a t i o n ,  (Y r e g i s t e r )  = y # 0 and (R r e g i s t e r )  w i l l  be 
t = O  0 t = O  
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assumed zero. Under such an assumption, Eqs. (2.8) and (2.10) w i l l  pro- 

duce one ex t r a  a rea ,  a s  shown i n  black i n  Figs. 3 and 4. Therefore,  i n  

genera l ,  Eq. (2.11) can be modified f o r  any as 
YO 

T h i s  d i scuss ion  i s  based on t h e  assumption t h a t  the ca l cu la t ion  w i l l  

start a t  tl f to, and a t  t only i n i t i a l - v a l u e  t r a n s f e r  is performed. 

a l l y  known beforehand, c a l c u l a t i o n  starts from t i m e  t and Eq. (2.12) 

is appl icable .  For a real-time d i g i t a l  f i l t e r ,  the  i n i t i a l  v a l u e  Y is 

always equal t o  zero;  therefore ,  no i n i t i a l - v a l u e  r e g i s t e r  i s  needed. 

N o t e  t h a t  t does not  necessa r i ly  denote t i m e .  Equation (2.10) y i e l d s  

0 

In  the  case where Y has been set t o  zero  w i t h o u t  a c t u -  
0 

0 

0 

(2.13) 

The z-transform of the  above d i f f e rence  equation obta ins  

or  

T(32-I - z -2 y(z)  
R ( z )  = 

2 ( 1  - 2-3 
The error ana lys i s  of  t he  modified t rapezoidal  i n t eg ra t ion  and 

the  comparison with the  e r r o r  i n  t h e  classical t rapezoida l  i n t eg ra t ion  

are presented i n  Appendix G, where t h e  modified scheme is found t o  be 

as good as the  unmodified one. 

B. The D i g i t a l  In t eg ra t ing  Element 

The opera t ion  of t h e  d i g i t a l  i n t e g r a t o r  is more or less the same 

f o r  a l l  i n t eg ra t ion  methods. Only those opera t ions  performed by 

SEL-6 8-084 12 



rec tangular  and modified t rapezoida l  r u l e s  are discussed i n  t h e  following 

sect ions ,  

1. Operation of t he  D i g i t a l  I n t e g r a t i n g  Element wi th  the  
Rectangular- In t eg ra t ion  Rule. 

I n  Fig. 5 ,  i t  is  assumed t h a t  increments Ax, &, and @z are 

i n  the  form of  ind iv idua l  pulses .  The r e v e r s i b l e  counter  1 counts the 

incoming pulses .  For each in t eg ra t ion  s t e p ,  pu lses  from seve ra l  input  

channels are accepted, and t h e  number of pu lses  accumulated is regarded 

as an increment of  t h e  in tegrand ,  where t h a t  increment is  the sum of 

s eve ra l  elementary increments, i . e . ,  Cny. 

‘I 

Fig. 5 .  BLOCK DIAGRAM 
INTEGRATION RULF:. 

L. 

OF DIGITAL INTEGRATING ELEMENTS WITH RECTANGULAR- 

For each i n t e g r a t i o n  s t e p ,  Y,& s to red  i n  counter  1 is summed 

wi th  the  number y stored i n  r e g i s t e r  2 (y r e g i s t e r )  by means of t h e  

C1 adder. 

y = yo k CAY is  obtained for  each s tep .  During each s t e p ,  y s tored  

i n  r e g i s t e r  2 is added t o  r e g i s t e r  3 (R r e g i s t e r ) ,  wherein t h e  number 

corresponding t o  the  sum of t he  o rd ina te s  ( i .e. ,  t he  value of the  in te -  

g r a l )  i s  s tored .  Summation of y and Ro is achieved by the 5 adder,  

0 

A s  a r e s u l t  of add i t ion  (or sub t r ac t ion ) ,  a new o rd ina te  

z = R  + Y  
0 
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is  t h e  num 

which is  an approximation of 

where 

n 
x n =chi  

i=l 

However, i f  t h e  R r e g i s t e r  has t h e  same length  (or less) as the y r e g i s t e r  

and i f  r e g i s t e r  4 (n7; r e g i s t e r )  is appended to  the  R r e g i s t e r ,  t h e  @z 

r e g i s t e r  w i l l  be used t o  store t h e  carriers generated i n  the  R r e g i s t e r .  

Hence, during summation, t he  R r e g i s t e r  may overflow, r e s u l t i n g  i n  

@zi + Ri = Riml + Yi hi (2.15) 

is  t h e  number i n  t h e  R r e g i s t e r  after yi has been added by 
Ri 

where 

t h e  presence of t h e  ith Lpr pulse .  Therefore,  

.16) 

n t o  



with  a round-off e r r o r  

and adders  i n  Fig. 5 is an approximate in t eg ra to r .  Regis ters  3 and 4 

may be  regarded as two p a r t s  of a s i n g l e  r e g i s t e r  having 2n b i t s ;  r e g i s t e r  

3 holds t h e  less s i g n i f i c a n t  b i t s  of i n t e g r a l  z ,  and r e g i s t e r  4 holds 

the most s i g n i f i c a n t  b i t s  loca ted  a t  (n+l )  to 2n-bi t  pos i t ions .  I n  s u c h  

an arrangement, z has,  a t  the most, t w i c e  a s  many b i t s  as the  integrand 

r e g i s t e r  2. 

Ro - Rn. Therefore,  t h e  combination of  r e g i s t e r s  

The i n t e g r a t i o n  process  of accumulating t h e  overflow pulses  A2 

from the  i n t e g r a t o r  ou tput  by r e g i s t e r  4 has been discussed. I n  genera l ,  

the i n t e g r a l  increment & is 

& = kyGx (2.17) 

where k i s  a cons t an t  scale f a c t o r .  For binary numbers, 

1 k = -  
2" 

(2.18) 

den0 t es 
RO 

and n is the  number of  b i t s  of r e g i s t e r  y or z ,  where 

the  number i n i t i a l l y  i n  r e g i s t e r  3. 

The c o e f f i c i e n t  k is  the  scale f a c t o r  of  t h e  d i g i t a l  i n t e g r a t o r  

and s i g n i f i e s  that ,  f o r  y = 1 and Cyr = 1, 2n summations (or 2n 

s t e p s )  are requi red  t o  ob ta in  one overflow pulse  & a t  t h e  output  of  

r e g i s t e r  3. I f  y is  equal  t o  2" and = 1, there w i l l  be an over- 

flow pu l se  f o r  each of t h e  i n t e g r a t i o n  s t eps .  

Converting from increments C y r ,  &, and & t o  de r iva t ives  of x ,  

y ,  and z i n  t i m e ,  t h e  formula &z = k y k  can be r ewr i t t en  as 

(2.19) 

or i n  t h e  form of  an i n t e g r a l  

z = k  y d x  f (2.20) 
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(2.21) 

R +-R + Y + 3 mY/2 

where Y and R are r e g i s t e r s ,  and the  arrow means "is replaced by." 

For example, t h e  sum of the o ld  content of t he  Y r e g i s t e r  and I A Y  w i l l  

be placed i n  the Y r e g i s t e r  as the  new content .  

AX 

Fig. 6. FUNCTIONAL BUILDING BLOCK OF DIGITAL INTEGRATING ELEMENT 
PERFORMING EQ. (2.21). 

\ 

I n  Fig. 6 ,  t he  overflow ind ica to r  Az can be expressed a s  

Az = +1 i f  R has overflow 

= -1 i f  R has underflow 

= 0 otherwise.  
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Chapter I11 

OPTIMAL DESIGN CONSIDERATIONS OF DIGITAL MODULES 

Certain problems need to be considered during the optimization of 

digital modules: 

1. By using digital modules as real-time building blocks for syn- 
thesizing network functions, speed of operation must be as high 
as possible. To achieve this high-speed operation, the digital 
integrator utilizes a fast integration algorithm (modified- 
trapezoidal method) and a special number system (signed-digit 
number system); both are operated in a parallel fashion. 

2. With the specified speed of operation, the type and number of 
digital modules, for which a certain network function is to be 
constructed, are to be minimum. 

3. Accuracy can be varied, and the network function realized should 
be better than the conventional method of realization. Hence, 
for applications in designing network functions, the internal 
register length of the digital integrator is assumed to have a 
single precision of lom3; i.e., the length of the register is 
equivalent to a three-decimal digit length. As will become 
clear later, for the case described, the precision is (2 X 666) 
or 0.7575 x 

-1 

rather than low3. 

A. The Signed-Digit Number System 

In 1961, Avizienis [Refs. 9 and 101 introduced a class of number 

representations, called signed-digit representations, that limits the 

carry propagation to one position at the left during the operation of 

addition and subtraction in the arithmetic unit. Carry-propagation chains 

are eliminated by the use of redundant representations for the operands. 

In a conventional-number representation with an integer radix r > 1, 
each digit is allowed to assume exactly r values: 0,1,2, ...., r-1. 
In a redundant representation with the same radix r, each digit is al- 

lowed to assume more than r values; i.e., the allowed values q are 

r + 2 < q < 2r - 1 (3.1) - -  

For the application here, r = 10 and maximum redundancy is used; that 

is, a total of 2 X 10 - 1 = 19 numbers are allowed: 9, 8, 7, 6, 5, 4, 
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3, 2, 1, 0, i, 5, 5, z ,  5,  5, 7, g, 5,  where the bar indicates the nega- 
tive number. 

subtraction [Ref. 91, the outgoing transfer digit and the interim sum 

digit, 

5<  wi < 5. 

To satisfy the condition of totally parallel addition or 

and w respectively, are restricted to be 8 <  ti < 4 and ti i' - 
Any addition can be done in two successive steps. If two - - 

then i' operands are yi and z 

Yi =+ Z = rt + w  i i-1 i (3.2) 

and the sum digit is formed as 

s = w  + t  (3.3) i i i 

For example, the conventional radix-10 numbers 64,  72, 48, -39, 5, 9, 

and 279 are represented in signed-digit numbers as 64, 72, 48, 5, 5, 
9, and 279. In performing addition or subtraction, these numbers are 

represented as l z4 ,  132, 52, zl, 5, 11, and 3=, respectively; for example, 

64 = 100 - 40 + 4. An example is given to show the addition procedure. 

Example 1. 

Suppose the radix-10 signed-digit operands are: 

augend z :  1.56514, the algebraic value 2 = 0.76486 

addend y: O . ' ; i O 5 3 i ,  the algebraic value Y = -0.39471 

The procedure of addition is as follows: - - - 
augend z: 1. 3 6 5 1 4 

addend y : 0. 4 0 5 3 1 
- - 
- 

step 1: 0+1. 10+3 lO+Z 10+0 0 +2 O+E - 
step 2: 1. 1 1 0 0 

sum s: 0. 4 3 0 2 5 
- - 

The sum is s: 0.45025 and the algebraic value S = 0.37015. 

Because radix-10 signed-digit numbers are used, each digit can be 

coded by 5-bit binary numbers. The code used here to identify the signed- 

digit numbers is: 
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9: 01001; 8: 01000; 7: 00111; 6: 08110; 5: 00101; 4: 00100; - - 
3: 00011; 2: 00010; 1: 00001; 0: 00000; 1: 11111; 2:  11110; 

9: 10111. 

- - - - - - 
3:  11101; 4: 11100; 5: 11011; 6: 11010; 7: 11001; 8: 11000; 

Note that 0 has a unique representation, as do all the others. 

B. Minimum-Cost Criterion 

The advances made by integrated-circuit technology, especially 

large-scale integration (LSI), make it possible to define a minimum 

cost for synthesizing a combinational switching function [Ref. 161. 

Because the principal interest in this report is to synthesize network 

functions of variable precision by using digital elements, minimum 

cost can be defined as the cost incurred under the following three 

constraints: 

1. The number of types of modules that make up the network 
function must be minimum. 

2. The circuit chosen to realize any given network function must 
contain the smallest number of modules. 

3. The number of input-output pins of a module must be minimum. 

Variable precision means that the lengths of the Y and R registers 

can be varied; thus, the precision of the integration varies accordingly. 

Subject to the first constraint, it is obvious that the minimum 

number of types of modules is one; i.e., one universal module best 

satisfies the first constraint, A s  noted earlier, the realization of 

network functions needs the operations of integration, addition, and 

multiplication; therefore, the universal module should contain digital 

integration and summing elements. The second constraint is also satis- 

fied; however, the third may not be because more operations need more 

input-output pins. 

Because multiplication by a constant requires one digital inte- 

grating element and because incremental multiplication can be performed 

by using two digital integrating elements and one digital summing ele- 

ment [Ref. 171, it is natural to break the block structures into two 

kinds of elements, namely, digital-integrating and summing. A compari- 

son between the cost of using universal modules and the cost of using 
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two-element modules ,to realize network functions is made in Chapter 1V.C. 

However, under certain assumptions, the two-element module is more eco- 

nomical, and, thus, it will be used here to realize all the networks. 

C. Proposed Two-Element Module 

1. Digital Variable-Precision Integrating-Element Module 

The proposed digital integrating-element module with variable 

precision is shown in Fig. 7. The pin-number assignments are arbitrary; 
however, their functions are important. Referring to Fig. 7, this module 

has two sets of incremental AY inputs: pins 1 to 4 as a set that takes 

any incremental Ay between 7 to ?, and pins 5 and 6 as a set that takes 

Pins 7 and 8 are assigned to the Ax input, where &ti between 1 and i. 

} A Z  (OVERFLOW OR UNDERFLOW 
OF R REGISTER 

INDEPENDENT VARIABLE 
INCREMENT INPUT 

OVERFLOW OR UNDERFLOW } ( OF Y REGISTER 
DEPENDENT 

VARIABLE 
INPUTS 

=t  

RESET 

I NH I t )  I T  

POWER LINES 

.Fig. 7. DIGITAL VARIABLE-PRECISION INTEGRATING ELEMENT. 
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Ax is between 1 and 7. 
be used as the clock input, while pin 7 is held at zero. Pins 9 and 10 

are assigned to ,Az, where Az = 01 (+l) or Clz = 11 (-1), correspond- 

ing to overflow or underflow, respectively. The overflow or underflow 

of the Y register will be taken from pins 13 and 14. The reset, the in- 

hibit, and the power-supply lines are assigned to pins 16, 17, 18, and 

19. Pins 11, 12, and 13 will be held at zero if single precision is used. 

For more than double precision, pin 15 will be held at one level, while 

pins 11 and 12 will be connected to pins 9 and 10 of the previous stage 

of the cascading integrating element. In addition, pins 13 and 14 of 

the previous stage must be connected to pins 5 and 6 of the current inte- 

grating element. For cascade connection, refer to Fig. 8, where a double- 

precision cascade connection is shown. 

If the independent variable is time, pin 8 will 

AX I (OVERFLOW OR UNOERF LOW 1 

0 

0 

0 

Fig. 8.  CASCADE CONNECTION OF DIGITAL INTEGRATING ELEMENT 
FOR PURPOSE OF DOUBLE PRECISION. 

The internal building structure and the complete logical design 

of the digital variable-precision integrating element are shown in Appen- 

dix B, where all the logics are combinational networks, except the Y and 

R registers. For fast operating speed, logic can be done by two level 
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AND-OR gates to minimize the propagation delay; however, the number of 

gates can be reduced significantly by increasing the levels of the AND- 

OR gates. 

The overflow and underflow problem of the unconventional signed- 

digit number system is not as simple as the conventional one. In the con- 

ventional number system (for example, either the binary or decimal system), 

the overflow or underflow can be determined by the very leftmost digit and 
the sign digit. In other words, the overflow or underflow can be deter- 

mined by the nonzero value of the digit-one position at the left of the 

most significant digit of the R register. For the case of three-decimal 

digits in the R register, if R has a value of +1 x x x or -1 x x x, 
not only an overflow or underflow occurs but also the remainder will be 

automatically left over in those x x x positions. However, in the un- 

conventional signed-digit redundancy number system, the overflow or un- 

derflow is a function of all digits of the R register, and thus overflow 
or underflow can be detected, as is shown in Appendix B. - 

The remainder problem can also be solved by adding 1334 (deci- 

mal number -666) or 1334 (decimal number +666) to the R register if 
overflow or underflow occurs, respectively, This has been resolved in 
the integrator design. For example, at time tn,l, the R register stored 

1337 (decimal number 663) and no overflow or underflow occurred. Now, 

suppose at time 

which would result in an overflow (in decimal number 663 + 5 = 668 > 666). 
As soon as the overflow indicator is turned on, number 1334 will be added 

to the contents of R, and the remainder 1332 + ‘i334 = 0002 results. 

- 

- 
- 

number 5 is added into R and makes R = 1332, tn’ 

- 
- 

2. Digital Summing-Element Module 

The digital summing element is shown in Fig. 9 where, according 

to control (see Table l), addition, subtraction, or multiplication is per- 

formed. Three sets of inputs, 

1 to 3, 4 and 5, and 6 to 8, where 

3 < - &y3 < - 3. Control signals c1 and c2 are assigned to pins 13 and 

14. Their function is to control the sum S ,  such that 

Ayl,  &,, and Oy are assigned to pins 3 
1 <  - &v2 < - 1, - - 

3 < - Ayl< - 3, and - 
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where 

v = logic OR 

A = logic AND - 
thus, the range of S is 7 < S < 7. 
The logic design of the digital sum- 

- -  

00 AY (Z 0 0 where only combinational logics are 

employed. O@ AY2{0 

@ @  
CONTROL 

P P  
DIG I TAL 
SUMMING 
ELEMENT 

__Q 

digital integrating and summing ele- 

ments; therefore, a large number of 

AND-OR gates are used. However, 

with the advancement of large-scale- ~ i ~ .  9. DIGITAL-SU~ING ELEMENT. 

integration techniques, it has been 

predicted that to cram a thousand gates in one chip [Refs. 18, 19, and 

201 will be no problem before 1970. The cost of the LSI module depends 

on the internal repeatability of the subcells. Hence implementation of 

the two types of modules utilizes the high standardization of the sub- 

cell. This is described in Appendixes B and C, where, without much 
simplification of the logic, the number of gates is roughly 900 and 200 

for digital-integrating and summing elements, respectively. A s  was noted 

earlier, this number is well within the predicted limitation. 

Table 1 

CONTROL ASSIGNMENT OF SUMMING ELEMENT 
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Chapter IV 

REALIZATION OF TRANSFER FUNCTIONS BY USING DIGITAL-INTEGRATING AND 
SUMMING ELEMENTS 

A. Solutions of Differential Equations Using Two-Element Modules 

Functionally, a digital integrator is represented by a schematic, 

as shown in Fig. 10, where arrows indicate the direction of data flow. 

The inputs dx and dy are incremental inputs, and dx can be either 

an incremental time input dt (clock pulses) or a function of y. The 

output dz observes the relations 

o r  after summing up the dz, 

z = 1 ydx (4. lb) 

Sometimes, more than one digi- 

tal integrator is used to solve a 

certain problem, in which case they 

can be connected in such a way that 

the overflow of one integrator is 

connected to the input o f  the other. 

dz = ydx 

Fig. 10. FUNCTIONAL SCHEMATIC 
OF A DIGITAL INTEGRATOR. From time to time, scalar multipli- 

cation is required; in that event, 

an integrator also can be used. If the’ dy input terminal is left open 

and the content of the y register is set to a desired constant k, then 

dz = kdx; that is, the output dz is equal to k multiplied by the dx 

input (see Fig. 11). 7- dz = kdx A set of digital integrators 
can be used to solve an ordinary 

differential equation of any order 

o r  degree, linear or  nonlinear, or  

even a simultaneous set of such 

dx dz =kdx 
P 

Fig. 11. SCHEMATIC OF A CON- 
STANT MULTIPLIER. 

equations. Normally, for solving 

a differential equation, two steps (mapping and scaling) are involved. 
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Mapping s p e c i f i e s  how the  opera t iona l  u n i t s  ( i n t eg ra to r s  and adders) 

should be interconnected so t h a t  t h e  va r i ab le  or var iab les  of i n t e r e s t  

a r e  generated wi th in  t h e  system. Because a d i g i t a l  i n t e g r a t o r  has a 

l imi t ed  capaci ty  of r e g i s t e r s ,  it is  necessary t o  ensure t h a t  interme- 

d i a t e  r e s u l t s  s t a y  wi th in  t h e  spec i f i ed  ranges during the  running of a 

problem, so t h a t  t h e  est imated maximum values of each of t he  var iab les  

can be sca led  t o  a meaningful range. T h i s  i s  amplitude sca l ing .  Some- 

times, frequency s c a l i n g  i s  a l s o  employed t o  ensure proper operat ion.  

For a real-t ime device,  the  amplitude and frequency of t he  input must 

be spec i f i ed  i n  a workable range; t he re fo re ,  no frequency sca l ing  is  

permissible.  However, i f  amplitude s c a l i n g  is necessary,  it can be done 

e i t h e r  by ad jus t ing  the  r a t i o  of the  analog-to-digi ta l  or the  d i g i t a l - t o  

analog converters  or by using a m u l t i p l i e r  t o  r e s t o r e  the  s c a l e  f ac to r .  

Example 2. 

Solve the following d i f f e r e n t i a l  equation: 

Solut ion.  Because t h e  d i g i t a l  i n t e g r a t o r  only dea l s  with d i g i t a l  incre-  

ments, d i f f e r e n t i a t i n g  the  given d i f f e r e n t i a l  equation once y i e lds  

dj; = d? + d ( s i n  y)  

The so lu t ion  y can be obtained by interconnect ing the  d i g i t a l  

i n t e g r a t o r s ,  a s  shown i n  Fig. 12,  where the  independent va r i ab le  input  

is  d t .  The i n i t i a l  condi t ions of y(O), f(O), and y(0) have not 

been considered; however, they can be t r e a t e d  by adding one ex t r a  regis-  

t e r  ( t h e  I r e g i s t e r )  t o  s t o r e  t h e  i n i t i a l  condi t ion f o r  each in t eg ra to r .  

The da ta  t r a n s f e r  from I r e g i s t e r  t o  y r e g i s t e r  w i l l  be done a t  t he  

beginning of t he  operat ion cycle.  S imi la r ly ,  nonl inear  d i f f e r e n t i a l  

equat ions can be solved without d i f f i c u l t y .  For s impl i c i ty ,  a circle 
ind ica t e s  t he  mul t ip l i ca t ion  by a cons tan t ,  with the  des i red  constant 

noted. 
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;-;-sin Y = O  
djf=di+d(sin y 

cos y d y  

.~ 

Fig. 12. CONNECTIOHS FOR SOLUTION OF - $ - sin y = 0. 

Example 3. 

Solve the following nonlinear differential equation: 

Solution. Differentiating the given equation once, yields 

The solution can be obtained by interconnecting digital integrators, 

as those shown in Fig. 13. 

B. Synthesis Methods for Transfer-Function Realization 

The transfer function is defined as the ratio of the Laplace trans- 

form of the output quantity to the Laplace transform of the input, with 

the restriction that the initial conditions appearing in the transformed 

differential equation (or equations) are all zero [Ref. 211. 

Let 

PCy(t)l Y ( s )  Transfer function = G(s) - = -  - PCx(t)l X ( S )  
(4.2) 
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I 1 

2 Fig. 13. CONNECTIONS FOR SOLUTION OF - y 5 + y = 0. 

where y(t) and x(t) are the output and input of a system, respectively. 

Suppose there is a black box with the transfer function G(s); the purpose 

is to realize the black box with digital elements. The input and output 

quantities can be either electrical voltage or current; hence, the trans- 

fer function can be voltage-to-voltage or  voltage-to-current, or vice versa. 

Generally, the transfer functions to be discussed are those whose degree 

of the numerator is equal to or less than the degree of the denominator, 

l 

such that G(s) Is ~ o o  is finite [Ref. 111. 

Before the different methods of synthesis procedures are presented, 

a simple example will illustrate how the realization of the transfer func- 

tion can be done by using digital integrating and summing elements. 

Example 4. 

Given a simple transfer function, 
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where s is t h e  complex var iab le ,  r e a l i z e  G(s) with only d i g i t a l  

elements,  and show t h e  s t e p s  of r e a l i z a t i o n  i n  d e t a i l .  

Solution. 

y i e l d s  

F i r s t ,  transforming the  given func t ion  back t o  the  t i m e  domain, 

The network having the  above c h a r a c t e r i s t i c s  can be r ea l i zed  by intercon- 

nec t ing  the  d i g i t a l  bu i ld ing  blocks,  a s  shown i n  Fig. 14,  where dx and 

dy a r e  the  d i g i t a l  input and output ,  respec t ive ly ,  and ADIC and DAC a r e  

no t  shown i n  connection with x ( t )  and y ( t ) .  

INPUT 

dx- 

Fig. 14. REALIZATION OF TRANSFER FUNCTION l/(s + 1). 

For convenience, t h i s  network contains  two r e g i s t e r s  of 8 b i t s  each 

(see  Fig. 15). 

mum. The input  dx can be obtained a s  the  d i f f e rence  between the  two 

consecutive samples of t h e  inpu t ;  t h a t  i s ,  dx can be obtained by l e t t i n g  

The 8 whole-number b i t s  have a capaci ty  of 28 = 256 maxi- 

During the  presence of the  d t  pulse ,  the  dura t ion  of d t  can be roughly 

divided i n t o  th ree  subtime i n t e r v a l s ,  TI, T2, and T3. In TI,  t he  

summation of dx and -dy is  performed, where -dy comes from the  
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FLOP 

I - 
R REGISTER 

I .  1 I I 1 . 1  I I 1 

dy=O, l,or-I F, 1 - 
,- 

GATE 
AND 

ADDER 

3 REGISTER I 

..I dt 

-e 
ADDER - 

Fig. 15. TRANSFER FUNCTION l/(s + 1) WITH 8-BIT REGISTERS. 

4 

f l i p - f l o p  F, which conta ins  t h e  overflow of t h e  R r e g i s t e r ,  Within T2, 

t h e  sum of 

placed i n  t h e  y r e g i s t e r .  Meantime, the  f l i p - f l o p  F w i l l  be r e s e t .  In 

T3, 
r e g i s t e r ,  and t h e  resu l t  i s  placed i n  the R r e g i s t e r .  I f  t he  R r e g i s t e r  

(dx-dy) p lus  the  contents  of t he  f r e g i s t e r  w i l l  again be 

the  contents  of t he  9 r e g i s t e r  a r e  added t o  t h e  contents  of the R 

has no overflow, the  F output i s  zero ,  i . e . ,  dy = 0. I f  there  i s  an 

overflow, the  output of F i s  one. In  o ther  words, dy = 1 or dy = -1; 

t h e  choice depends on t h e  s ign  of t h e  R r e g i s t e r .  For the  case i n  Example 

4 ,  dy = -1 i f  R <  -256 and dy = 1 i f  R >  - 256. - 
The s t r u c t u r e  of t he  d i g i t a l  i n t e g r a t o r  (connected e i t h e r  i n  series 

or i n  p a r a l l e l )  is much simpler for t h e  ser ies-operated d i g i t a l  i n t e g r a t o r ,  

but t he  opera t ion  speed is slower. 

The s imulat ion of t he  problem i n  Example 4 was solved on t h e  d i g i t a l  

computer. The computer program of the  s inusoida l  and uni t - s tep  responses 

of t h e  network a r e  presented i n  Appendixes D and E. The step-by-step ca l -  

cu la t ions  a r e  tabula ted  i n  Tables 2 and 3, and the  graphical  responses a r e  

shown i n  Figs.  16 and 17, where the  method of rec tangular  i n t eg ra t ion  w i t h  

the  te rnary  code is assumed. 
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Table 2 

Input: x ( t )  = 255 s i n  t 

L e t  t = TD56, x i ( t )  = 255 s i n  (T/256 i) , dx = x ( t )  - XREGi-l 

XREGi = XREGi-l + dx *REG. = ?REGip1 + d? 

RREG. = RREGiw1 + ?REG d? = dx - dY 

dY = 1 while RREG has overflow, dY = -1 while RREG has underflow, 

otherwise dY = 0 

YREG = YREGi-l + dY i 
Assume that a l l  reg i s t ers  have 6-bi t  length, and that the method o f  tri- 
angular integration with trinary code is used. 

T XREG GREG RREG dY YRFG Real Solution y ( t )  

0 0 0 0 0 0 0 
1 0 0 0 0  0 0.0019 
2 1 1 1 0 0 0.0077 
3 2 2 3 0 0 0.0175 
4 3 3 6 0 0 0.0310 
5 4 4 10 0 0 0.0485 
6 5 5 15 0 0 0.0697 
7 6 6 21 0 0 0.0948 
8 7 7 28 0 0 0.1236 
9 8 8 36 0 0 0.1563 
10 9 9 45 0 0 0.1927 
11 10 10 55 0 0 0.2329 
12 11 11 66 0 0 0.2768 
13 12 12 78 0 0 0.3244 
14 13 13 91 0 0 0.3758 
15 14 14 105 0 0 0.4308 
16 15 15 120 0 0 0.4895 
17 16 16 136 0 0 0.5519 
18 17 17 153 0 0 0.6179 
19 18 18 171 0 0 0.6876 
20 19 19 190 0 0 0.7609 
21 20 20 210 0 0 0.8377 
22 21 21 231 0 0 0.9182 
23 22 22 253 0 0 1.0022 
24 23 23 20 1 1 1.0898 
25 24 23 43 0 1 1.1809 
26 25 24 61 0 1 1.2756 
27 26 25 92 0 1 1.3737 
28 27 26 118 0 1 1.4754 
32 31 30 232 0 1 1.9166 
33 32 31 7 1 2 2.0355 
41 40 38 f 27 1 3 3.1079 
64 63 56 95 0 7 7.3334 
96 93 78 209 0 15 15,7509 
128 122 96 192 0 26 26.6718 
160 149 110 175 0 39 39.6026 
192 173 120 33 1 54 54.0565 
224 195 126 153 0 69 69.5563 
256 214 129 159 0 85 85.6381 
288 230 129 203 0 101 101.8551 
320 241 124 171 0 117 117.7813 
352 250 118 216 0 132 133.0156 

147.1856 384 254 108 244 0 146 
416 254 95 157 0 159 159.9513 

171.0087 448 251 81 178 0 170 
480 244 65 210 0 179 180.0927 
512 232 46 188 0 186 186.9797 

193.4906 576 199 6 71 0 193 
640 153 -37 -172 0 190 189.6576 

175.3460 704 98 -78 -292 0 176 
151.1551 768 36 -116 -115 -1 151 
135.7300 800 5 -131 -222 0 136 

832 -27 -146 -59 -1 118 118.3627 
896 -89 -168 -194 0 79 78.8314 

992 -170 -183 -104 -1 12 12.0636 
1000 -176 -183 -33 -1 7 6.3290 

960 -145 -181 -163 -1 35 34.8820 

1024 -11 
1152 -97 

1408 -180 
1280 -158 

SINUSOIDAL RESPONSE OF G ( s )  = l / ( S + l )  RESULTS 
BY DIGITAL-ELEMENTS REALIZATION 
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Table 3 

UNIT-STEP RESPONSE OF RXSULTS 
BY DIGITAL-ELE 

0 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 
255 

+REG 

0 
255 
255 
254 
253 
252 
251 
250 
249 
248 
247 
246 
245 
244 
243 
242 
241 
240 
2 39 
238 
237 
2 36 
235 
234 
233 
233 
232 
231 
2 30 
229 
228 
227 
226 
225 

- 
RREG 

0 
255 
253 
251 
248 
244 
239 
233 
226 
218 
209 
199 
188 
176 
163 
149 
134 
118 
10 1 

83 
64 
44  
23 
1 

234 
211 
187 
162 
136 
109 

8 1  
52 
22 

24 7 

- 
- 
dY 

0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
0 

- 
0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13  
1 4  
15 
16 
17 
1 8  
19  
20 
2 1  
22 
22 
23 
24 
25 
26 
27 
28 
29 
30 
30 
56 
80 
100 
118 
134 
149 
161 
172 
182 
191 
198 
205 
211 
216 
221 
228 
234 
239 
242 
244 
245 
24 7 
249 
250 

2.9824 
3.9689 
4.9514 
5.9302 
6.9051 
7.8762 
8.8436 
9.8072 

10.7670 
11.7230 
12.6754 
13.6240 
14.5690 
15.5102 
16.4478 
17.3817 
18.3120 
19.2387 
20.1617 
21.0811 
21.9970 
22.9093 
23.8180 
24.7232 
25.6249 
26.5230 
27.4117 
28.3088 
29.1965 
30.0807 
30.9615 
56.6269 
80.0539 

100.7281 
118.9730 
135.0741 
149.2833 
161.8228 
172.8889 
182.6547 
191.2730 
198.8786 
205.5906 
211.5138 
216.7411 
221.3541 
229.0177 
234.9862 
239.6344 
243.2545 
244.7521 
246.0738 
248.2694 
249.9794 

On the basis of the results of the unit-step and sinusoidal responses, 

a comparison be realizations can be made. From 

the last two column 
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200 

IO0 

0 I I i \ I  
256 512 768 

Fig. 16. SINUSOIDAL F3ISPONSE OF G ( s )  = I/(s + 1) W I T H  INPUT 
x(t )  = 2 5 5  sin ( T D 5 6 ) .  

I I 1 1 1 0" T 
0 256 512 768 1024 1280 

Fig. 17. UNIT-STEP RESPONSE OF G ( s )  = l / ( s  + 1) WITH INPUT 
x(t )  = 255 .  
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they differ by one per 256 for registers of 8-bit lengths. 

with more than 8 bits are used, accuracy will be proportionally increased. 
If registers 

The closeness of the two solutions (digital and analog) is shown in 

Fig. 18. If trapezoidal integration is employed in the design integrators, 

the accuracy of the digital solution will be further improved. It is note- 

worthy that even if the input is not started from zero at t = 0 ,  as was 

assumed in Tables 2 and 3, the digital realization is still valid. 

For better approximation, more register bits can be used. In the 

presence of fractional numbers, as well as whole numbers, a few fractional- 

number bits can be attached to the end of the whole numbers and a fixed 

decimal point can be assigned. For example, to maintain an accuracy of 

10 bits, corresponding to the fractional number, will be used in 
-10 -3 addition to the whole-number bits because 2 = 1/1024 N 10 ; this il- 

lustrates how the given transfer function can be realized. For the reali- 

zation of a complicated transfer function, more digital integrators could 

be utilized. 

References 1, 2, 3, and 5 discuss digital-computer simulation of 

sampled-data systems; however, the realization of network functions by 

using digital elements can also be accomplished by direct, parallel, and 

cascade methods [Ref. 131. Realization does not take the form of a com- 

puter program or a set of digital delay elements but is an interconnec- 

tion of digital integrating elements and summing elements such as those 

differential-equation-solving problems encountered in the digital dif- 

ferential analyzer CRefs.13 and 171. The following example illustrates 

the realization procedures. 

Example 5. 

Suppose dx(t) and dy(t) are the input and output increments, 

respectively. Realize the transfer function 

(4.3) Y ( s >  
2 - X ( S >  

- -  k 
G(s) = 

s3 + fs + gs + h 

by using digital elements, where Y ( s )  = f[y(t)] and X ( s )  = f[x(t)I 

are Laplace transforms of y(t) and x(t), respectively. 
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6.0 

4.0 

2.0 

0 

SINUSOIDAL RESPONSE 
- 

- 

2 ‘CONTENTS OF THE r / I  Y REG6TER 

TRUE 

Fig. 18. COMPARISON BETWEEN THE TWO RESPONSES OF ANALOG AND DIGITAL 
REALIZATIONS 
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. The synthesis steps are more or less the s 

methods, 

1. 

iply Eq. (4.3) 

(s3 + fs2 + gs + h) Y ( s )  = kX(s) (4.4) 

(b) Transform the given transfer function into a time-domain 
differential equation, with zero initial conditions: 

y(t) + fy(t) + &(t) + hy(t) = kx(t) (4.5) 

( c )  Differentiate Eq. (4.5) once: 

dy + fdy + gd$ + hdy = kdx (4.6) 

(d) Rewrite Eq. (4.6) as 

d'ji = kdx - fdi - gd? - hdy (4.7) 

(e) Draw a solution diagram, as shown in Fig. 19, where the 
multiplication of a constant k is shown with a circle 
enclosing it. 

1st INTEGRATOR 
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2. Parallel Method 

(a) Expand G(s) of Eq. (4.3) into partial-fraction form: 

rs + q = -  
2 s + a  j +  2 
k G(s) = 

(s + a>(s + bs + c) s + b s + c  

= Ga(s) + Gb(s) (4.8) 

where 
Y1 (SI R Ga(s) = - = - 

s + a X ( s )  (4.9a) 

and a, b, c, k, R ,  r, and q are real constants. 

(b) Transform Y,(s) and Y (s) back to the time domain: 2 

and 

92(t) + by2(t) + c y2(t) dt = rx(t) + q x(t) dt s 
(4.10d) 

(c) Then, differentiate once, 

d$e = -bdy + rdx + (qx dt - cy2 dt) (4.11) 2 

(d) Draw a solution diagram, as shown in Fig. 2 0 ,  for 
dy2(t), and 

dyl(t), 

dy(t) = dyl(t) + dy2(t) (4.12) 
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dx 
OINPUT 

3 2 
Fig. 20. PARALLEL-METHOD REALIZATION OF G ( s )  = k/(s + f S + g S + h) . 

3. Cascade Method 

(a) Write G(s) i n t o  t h e  product of two t r a n s f e r  funct ions:  

1 k -- - 
s + a  2 s + b s + c  

(4.13) 

(b) Transform G1(s) and G2(s) i n t o  time-domain d i f fe ren-  
i t a 1  equat ions and d i f f e r e n t i a t e  once: 

(4.14) 

(c) Draw a so lu t ion  diagram, a s  shown i n  Fig. 21. 

4. Performance Error  and Cost Comparisons 

By observing Figs.  19, 20, and 21, it is seen t h a t  the  most 

economical way t o  r e a l i z e  a third-order  t r a n s f e r  funct ion is  by e i t h e r  

t h e  d i r e c t  or cascade method, where only s i x  d i g i t a l  i n t eg ra t ing  elements 

( th ree  a s  i n t e g r a t o r s  and t h r e e  a s  constant  mu l t ip l i e r s )  and one d i g i t a l  

summing elements a r e  used. The quest ion is: Which of t he  two synthes is  
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d x ( t )  INPUT 

Fig. 21. CASCADE-METHOD REALIZATION OF THE TRANSFER FUNC- 
TION G(s) = k/ ( s3+  f s 2 +  gs + h). 

methods utilizes a minimum number of modules? Consider a general third- 

order transfer function, which is more complicated than Eq. (4.3): 

2 
Y ( s )  

- X ( s )  
- -  k s  + ms + n 

s3 + fs2 + gs + h 
G ( s )  = (4.15) 

The realizations of G(s) by both direct and cascade methods are given 

below. 

(a) Cascade Method 

Equation (4.15) can be factored into 

s2 r s + q  + bs + c 1 1 G(s) = 1 k s  + m s + n  --[.+ 
s + a  s2 + bs f- c 

2 
- 

(4.16) 
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Transform Y ( s ) / Y  ( s )  = l / ( s  + a) into a time-domain 
differential equagion: 

d$(t) = dy2(t) - ady(t) 
2 Crossmultiply Y,( s ) /X(s )  = (rs + q)/(s + 

divide both sides by s to obtain 

(4.17) 

bs + c) and 

(4.18) 

Transform Eq. (4.18) into the time domain: 

dy3(t) = - bdyg(t) + rdx(t) - cy3(t) dt + qx(t) dt (4.19) 

and 
dy (t) = kdx(t) + dy3(t) 2 (4.20) 

Then draw a solution diagram, as shown in Fig. 22. Note 
that in Fig. 22 there are nine digital integrating and two 
summing elements, and six of the nine integrating elements 
serve as constant multipliers. 

r 

Fig. 22. CASCADE REALIZATION OF EQ. (4.15). 
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(b) Direct Method 
2 Crossmultiply Eq. (4.15) and divide both sides by s : 

s + f f - g + +) Y ( s )  = (k + 5 + 5) X ( S )  ( S 
S 

Transform Eq. (4.21) into a time-domain differential 
equa t ion : 

(4.21) 

(4.22) 

/J 

One of the direct-method realizations of Eq. (4.15) is shown in 

Fig. 23, where 10 digital integrating elements (six serving as constant 

multipliers) and two summing elements are utilized. Because this reali- 

zation is not unique, other configurations can be obtained also; for 

example, the term [mx(t) - gy(t)l dt in Fig. 23 can also be formed by 

first finding mx(t) dt and -gy(t) dt separately and then summing 

OUTPUT 

dx INPUT 1 1 

Fig. 23. DIRECT REALIZATION OF EQ. (4.15). 
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them together. Other configurations are found, requiring more integra- 

tors and summing elements. 

Comparing Figs. 22 and 23, it becomes obvious that the cascade method 

requires less modules, even less than those required by the direct method 

as the order of function goes higher. Hence, the network that results 

from the cascade method will always have a minimum number of modules. 

Furthermore, a summing element with three sets of inputs is sufficient 

for the cascade method but is not enough fo r  the other two methods. 

Concerning performance errors, there are three different types of 

errors: quantization, round-off, and coefficient. Quantization error is 

the same for all three methods, but as was pointed out ERefs.12 and 221, 

the round-off error resulting from the finite arithmetic operations of 

the recursive filter was found to be less for the cascade method. One 

way of checking which one of the three methods has the least coefficient 

error is to assume a double-precision wordlength f o r  the coefficient of 

an errorless (ideal) case; at the same time, using a single-precision 

wordlength for the coefficient of an error (nonideal) case. The final 

result shows that the cascade method has less error [Ref. 131; therefore, 

the most economical choice coincides with the best performance. 

Among the three synthesis methods, the best one to follow for a 

given problem is summarized below. 

For a given transfer function G ( s )  = Pm(s)Ipn(s) where Pm(s) and 

P ( s )  are of order m and n, n > m, respectively, the numerator and 

denominator will be decomposed into products of first- and second-order 

real-coefficient polynomials such that the second-order polynomials can- 

not be further decomposed into first-order real coefficient polynomials. 

As a result, the most effective procedure is the cascade method to syn- 
thesize each first- and second-order real-coefficient polynomials to 

achieve minimum realization. 

- n 

C. Comparison between Universal and Two-Element Modules Used in the 
Digital Realization of Network Functions 

C. Comparison between Universal and Two-Element Modules Used in the 
Digital Realization of Network Functions 

A s  a result of the minimum-cost criterion described in Chapter 111, 

a comparison is made between the cost of using universal modules and the 

cost of two-element modules to realize network functions. Suppose 
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A = integrating-element module 

B = summing-element module 

U = universal module 

Let 

C(A) = cost of A 
C(B) = cost of B 

C(U) = cost of u 
Then 

(4.23) 1 
k C(U) = - [C(A) -I- C(B)I 

As proposed in Chapter 111, A and B are 19- and 16-pin modules, 

respectively, and because they are contained in U, U is a 33-pin mod- 

ule, which is two power pins less than A and B. If the cost of an 

integrated-circuit module is directly proportional to the number of input- 

output pins, then 

19 
16 C(A) = -C(B) (4.24a) 

From Eqs. (4.15) and - (4.16) 

1 < k < 35/19 (4.25) - -  C(U) = L (Z)C(B) k 16 

If k < 1, that is, if U is more expensive than the total cost of A 
and B, the choice of the two-element module over the universal module 

is obvious. If k > (35/19), then C(U) is even cheaper than C(A); 

this is unlikely because A and B are contained in U. Comparing 

Eqs. (4.17) and (4.18), obtains 

35 k = -  33 or  1 35 33 
k 16 16 
- - = -  (4.26) 
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Consider the case of a general second-order transfer-function reali- 

zation, as shown in Fig. 24. It takes either 6 universal modules or 6A 

and 1B for a precision of .1 percent. Then 

(4.27a) 2 10 
16k C(Tl) = C(6U) = 6C(U) = -C(B) 

C(T ) = C(6A + B) = 6C(A) + C(B) = -C(B) 115 (4.27b) 
2 16 

where C(T1) and C(T ) are the costs of realization by using universal 

and two-element modules, respectively. To find if C(T1)> C(T2), com- 

pare Eqs.  (4.26) and (4.27): 

2 
- 

In LSI hybrid technology where 

one integrates to a certain level 

on the chip and then employs film 

technology to interconnect the A 

chips within a package [Ref. 81,  

the above assumed cost-pin linear 

relationship is approximately true. 

For the case of n-tuple pre- 
-3 n 

cision, i.e., error = (10 , 
n-cascaded digital integrating 

elements as in Fig. 8 are required. 

The cost would be 

Fig. 24. REALIZATION OF A GENERAL 
C (T2) =6nC(A) + C(B) (4.29b) 
n SECOND-ORDER TRANSFER FUNCTION 

G(s) = , le/ < 1. s +  c/e 
1 2  - ( s  + a s + b) e 
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Substituting Eqs. (4.16) and (4.17) into (4.23) yields 

If it is desired to make Cn(Tr) > Cn(T2), then from Eq. (4.30): 

99n + 99 > 114n + 16 

(4.30a) 

(4.30b) 

(4.31) 

or the maximum n that satisfies Eq. (4.31) is found to be 

In other words, if the cost-pin linear relationship holds, two-element 

modules used for building blocks will be least costly for precisions down 

to which is, of course, far more than enough in the application 

of network-function realization, Note that a precision of is 

approximately equivalent to 50-binary-bits precision. 
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Chapter V 

APPLICATION OF THE DIGITAL REALIZATION OF TRANSFER FUNCTIONS 

A. Digital Filters 

The term digital filter generally refers to the computational process 

or  algorithm by which a sampled signal or  sequence of numbers (acting as 
an input) is transformed into a second sequence of numbers termed the out- 

put signal. To date, real-time digital filters utilize digital computers 

to execute the difference equations in which the desired traysfer func- 

tions in z-transform are satisfied [Refs. 1, 2, and 31. 

The digital filters, proposed in this report, are somewhat different 

f r o m  the above definition and are also different in structure. Physically, 

they are composed of small digital building blocks (digital integrating 

and summing elements), and they deal with quantized signals rather than 

with discrete signals. Their functions are analogous to the continuous 

(analog) filters and are actually very good approximations to them. These 

proposed digital filters have definite advantages over the analog and 

sample-data filters because of their small size, accuracy, stability, and 

real-time controllability. 

The design procedures for continuous filters, such as Butterworth 

and Chebyshev filters, are treated in standard texts [Refs. 23, 24, and 

251 and are discussed briefly in Appendix F. 

The technique in designing a digital filter by using digital integra- 

tors is fairly straightforward. After the designer decides which type of 

filter fits his needs, he follows the outlines listed in Appendix F until 

he obtains the desired transfer function which he then transforms back to 

the time domain, whereby a linear differential equation can be formed. 

He follows the synthesis procedures listed in Chapter I V ,  which results 

in a diagram of interconnected digital integrators. Thus the design of 

the digital filter with a minimum number of two-element modules is com- 

pleted. The following examples are used to illustrate the design and 

implementation of these filters, using direct, parallel, and cascade 

methods . 

47 SEL-68-084 



Example 6. 

Using the  Butterworth t r a n s f e r  funct ion 

2 1 
2n 1G(jw) I = 

l + w  

design a low-pass f i l t e r  having a magnitude c h a r a c t e r i s t i c  such t h a t  a t  

a frequency th ree  t i m e s  t he  cutoff  frequency, t h e  magnitude is  a t  l e a s t  

25 dB down from i t s  value a t  zero frequency. 

Solut ion.  F i r s t ,  f i nd  t h e  required value of n: 

-2.5 n = 10 or loglo (1 + 9 ) = 2.5 
1 

gn = 316 or n = - -  2 '5  - 2.62 
0.954 

Thus, t h i s  required value is the  next l a r g e s t  i n t ege r  n = 3. 

For n = 3 ,  t h e  third-order  Butterworth polynomial is 

2 
B3(s) = s3 + 2 s + 2 s + 1 

hence, t h e  t r a n s f e r  func t ion  G(s) can be obtained a s  

Y ( s )  
- X ( s )  
- -  1 

G ( s )  = 
s3 4- 2 s2 + 2 s + 1 

N o w ,  t r y  the  t h r e e  methods of r ea l i za t ion .  

D i r e c t  Method: 

Transforming G(s) back t o  t h e  t i m e  domain y i e l d s  

(5.1) 
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... 
Y(t) + 2Y(t) + 2jr(t) + y ( t )  = x ( t )  (5.2a) 

or 

The solution and t h e  realized-network diagram a r e  shown i n  Figs.  25 and 

26, r e spec t ive ly ,  and t h e  s inusoida l  and s t e p  responses a r e  p lo t t ed  i n  

Figs.  27 and 28. 

OUTPUT 

y REGISTER 

I 

-7 -1 

Fig. 25. SOLUTION MAPPING BY DIRECT METHOD. 

P a r a l l e l  Method: 

Expanding Eq. (5.1) i n t o  p a r t i a l - f r a c t i o n  form y i e l d s  

1 S --- = - -  Y ( s )  1 
X ( s )  s + 1 s2 + + s3 + 2 s2 + 2 s + 1 
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d t  
v INTEGRATING 

ELEMENT 

" n 

Fig. 26. REALIZED NETWORK OF G(s) = l/(s3 + 2 sL + 2 s + 1) 
BY DIRECT METHOD. 
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0 256 512 768 1024 1280 
T 

3 Fig. 27. SINUSOIDAL RESPONSE OF G(s) = l/(s + 2 s2 + 2 s + 1) 
WITH INPUT x( t )  = sin (T/256). 

300 

200 

IO0 

0 
0 256 512 768 1024 1280 

T 
3 

Fig. 28. STEP RFSPONSE OF G(s) = l / ( S  + 2 s2 + 2 S -t 1) 9 

WITH INPUT x( t )  = 255. 

51 SEL-6 8-084 



and 

(5.3b) 

and t h e  output  s i g n a l  y ( t )  equals  y ( t )  - y 2 ( t ) .  1 
The d i g i t a l  f i l t e r  designed by t h i s  method is  shown i n  Fig. 29. 

d y, 
e 1 
yi 

dn 
*INPUT 

OUTPUT 

~~ 

dY2 J 

n 
L 

Fig. 29. REALIZATION OF G(s) = l/(s + 1) - S/(S + S + 1). 
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Cascade Method: 

Factor Eq. (5.1) into 

In the time domain: 

dy2(t) = dx(t) - dY2(t) - dy2(t) 

This cascade realization of G(s) is shown in Fig. 30. , 

I 
d i ( t )  INPUT 

1 )  OUTPUT 

(5.4a) 

(5.4b) 

3 
Fig. 30. CASCADE REALIZATION OF G(s) = l/(s -I- 2 s2 + 2 s + 1). 

Example 7. 

Design a low-pass filter utilizing the Chebyshev characteristic 
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so that 

1. The peak-to-peak ripple in the squared magnitude characteristic 
does not exceed 15 percent of the maximum value. 

2. The magnitude response is down at least 50 dB at cd = 4wc = 4. 

2 
Solution. First, it is necessary to calculate the required value of E . 
At the trough of the ripple: 

2 20 
= 1 - 0.15 = 0.85 or 1 + E: = 3 1 

2 thus E: = 0.175. 

At w = 4: 

-5 1 + E 2 2  Cn(4) = 10 5 = 10 1 

1 + E:2cn(4) 

or  

2 2  5 
E Cn(4) = 10 

implying that Cn(4) = 753. 

TO find n: 

(w + J U T T I  W 4  M 1506 or  n = 3.58 

Therefore, n = 4 will be very satisfactory. 

The location of the poles for the fourth-order Chebyshev polynomial 

can be found at 

SEL-68-084 
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where 

0 = k tanh a s i n  C(2k - l ) /nl(~r/2)  
k 

Wk = COS C(2k - 1)/2] (~r/2) 

-1 ~ and a = 1 / 2  s inh l/c: 
2 For the present c a s e ,  n = 4 ,  E = 0,176,  

1 -1 1 1 -1 a = sinh - = - sinh (2.38) = 0.402 
0.42 4 

and 

tanh a = 0.38  

Therefore, 

s = -0.144 + j0 .924 1 

s = -0,144 - j0.924 2 

s = -0.351 + j0 .383 3 

s = -0.351 - jO.383 4 

Thus, the transfer function G ( s )  can be obtained: 

0.111 - 
- 2  2 ( s  + 0.288 s + 0.416) (s  + 0.702 s + 0.268) 

(5 .7)  0.111 
3 2 

- - 
(s4 + 0.99  s + 0.886 s + 0.369 s + 0.111) 
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Equation (5 .7)  can be r ea l i zed  by the  th ree  methods: 

Direct Method: 

Transforming G(s) back t o  the  t i m e  domain 

(5. Sa) 
or 

ay = 0.111 dx - 0.99 89 - 0.886 dji - 0.369 dy - 0.111 dy (5.8b) 

The network r e a l i z e d ,  corresponding t o  the  above equat ion,  is shown 

i n  Fig. 31. 

P a r a l l e l  Method: 

0.414 s + 0.268 0.414 s -I- 0.439 
G(s) = - + 

s2 + 0.288 s + 0.416 s2 + 0.702 s + 0.268 

(5.9) 

where 

Y1 (SI 
-- 0.414 s + 0.268 

s + 0.288 s + 0.416 - X ( s )  G1(s) = 

Y2 (SI 
-- 0.414 s + 0.439 

s2 + 0.702 s + 0.268 - X ( s >  G 2 ( s )  = 

Transforming G (s) and G2(s) back t o  t h e  t i m e  domain y i e l d s  1 

yl(t)  + 0.288 y ( t )  + 0.416 y l ( t )  = 0.414 x ( t )  + 0.268 x ( t )  (5.10a) 
1 
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DIGITAL 
dy OUTPUT 

dY 
i 

I -0.1 I I 
. I  \ J 

F i g .  31. REALIZATION OF 
G ( s )  = 0.111/(s4 + 0.99 s3 + 0.886 s2 + 0.369 s + 0.111) 

BY DIRECT METHOD. 

and 

y2(t> + 0.702 y2( t )  + 0.268 y2(t)  = 0.414 k ( t )  + 0.439 x ( t )  

(5.  lob) 
or 

dyl = 0.414 dx - 0.288 dy + 0.268 Xdt - 0.416 yldt (5.10c) 1 

and 

dy2 = 0.414 dx - 0.702 dy2 + 0.439 xdt  - 0.268 y2dt (5.10d) 
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and t h e  o v e r a l l  output y ( t )  i s  

Y(t> = Y2(t) - Yl( t )  

The network r ea l i zed  by t h i s  p a r a l l e l  method is shown i n  

1 
,o 

c -  

0.439 
I 

Fig. 32. 

dx 10 0.414 1 
INPUT 

OUTPUT 
Fig. 32. REALIZATION OF 

G(s) = 0.111/(s4 + 0.99 s3 + 0.886 s2 + 0.369 s + 0.111) 
USING PARALLEL METHOD. 

Cascade Method: 

Y2 (SI 

2 Y , ( S >  X ( S )  
- Y ( s >  G ( s )  = --  - 1 ’ 0.111 

s2 + 0.288 s + 0.416 s + 0.702 s + 0.268 

In t h e  t i m e  domain: 

dy ( t )  = dy2(t)  - 0.288 dy ( t )  - 0.416 dy ( t )  

dy2( t )  = 0.111 dx( t )  - 0.702 dyZ( t )  - 0.268 dy2(t)  

Network r e a l i z a t i o n  by t h i s  cascade method is  shown i n  Fig. 

(5.11) 

(5.12a) 

(5.12b) 

33. 
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dx 

INPUT 

Fig. 33. CASCADE RFALIZATION OF 
G(s) = 0.111/(s4 + 0.99 s3 + 0.886 s2 + 0.369 s + 0.111). 

B. D i g i t a l  Spectrum Analyzer 

The spectrum analyzer  is a device used t o  measure t h e  d i s t r i b u t i o n  

of energy a t  d i f f e r e n t  frequencies of i n t e r e s t .  One method of measuring 

t h e  frequency spectrum is t o  measure t h e  energy i n  t h e  passbands of a 

bank of narrowband f i l t e r s .  The d i g i t a l  spectrum analyzer of interest  

he re  is  r e a l i z e d  by a bank of narrowband d i g i t a l  f i l t e r s ,  each with a 

f i x e d  bandwidth spanning t h e  e n t i r e  frequency range. An example of how 

t o  des ign  a bank of bandpass f i l t e r s  is given below. 

Example 8. 

Design a bank of bandpass f i l t e r s  with a common inpu t ,  each 400 

cycles/s wide, covering t h e  band 300 t o  3100 Hz. Contiguous f i l t e r s  a r e  

requi red  t o  c ros s  a t  -3 dB of t h e  midband gain. U s e  th i rd-order  maxi- 

mally f l a t  approximation. 

Solution. 

from t h e  frequency t ransformation of a low-pass f i l t e r .  

The t r a n s f e r  func t ion  of each bandpass f i l t e r  can be found 

For a t h i r d -  

order  maximally f l a t  low-pass f i l t e r ,  t h e  t r a n s f e r  func t ion  is  

1 
GL(s) = 2 

s 3 + 2 s  + 2 s + l  
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Make the following transformation: 

(5.13) 

B' p' 
5 2 2 4  3 2 3  4 2 2  2 4 6  p + 2 B p  + (3wo+2B )p + (B +4Bw0)p + (3wo+2B Wo)P +2moP+Wo 

G (SI = B 

(5.14) 
- where 

B = bandwidth of the bandpass filter 

w = geometrical mean of the cutoff frequencies of the bandpass 
0 

filter = 4 T G -  1 2  

w = lower cutoff frequency of the bandpass filter 

w2 = higher cutoff frequency of the bandpass filter 

1 

p = complex frequency 

With the above transformation formula, the first bandpass filter, 

from 300 to 700 Hz, can be designed as w = d300~700Hz=458.258Hz and 

B = 400 Hz. Normalizing B = 1 and w =458.258/400 = 1.1456, the trans- 

fer function of the first bandpass filter is 

0 

n 01 

3 
P 

p + 2 p + 5.937 p + 6.25 p + 7.79 p + 3.446 p + 3.26 G1(p) = 5 4 3 2 

(5.15) 

Without much difficulty, this transfer function can be realized by 

the syntheses found in Chapter IV.B, but an attempt will be made to real- 

ize it bv the cascade method. There is no doubt that theoretically the 
2 2 2 

denominator of G (p) can be factorized as (P +ap+b) (P +cP+d) (P +eP+f) J 1 
but it is very difficult to factor it as the order of the polynomials in- 

creases. From another point of view, the denominator might be factorized 

directly from the transfer function of the lowpass filter because the pole 

locations of the transfer function are known. This can be demonstrated 

by utilizing both the parallel and cascade methods: 
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P a r a l l e l  Method: 

GL(s) = 
1 s - - - -  1 

2 s + l  s 2 + s + l  s3 + 2 s  + 2 s  + 1 

1 
s + l  

Now t h e  transformation 

- - -  S - 
(s + 0.5 + j0.866) (s + 0.5’ - j0.866) 

can be made: 

then 

3 2  
P + U P  

Bp - 
2 G (P) = 

B p + p + U: [ p 2 + ( 0 . 5 + j 0 . 8 6 6 ) B p h j  [p + ( 0 . 5 - j 0 . 8 6 6 ) B p + w l  
(5.16a) 

1 1h [P + (.f/P)] 
GB(p) = 

1/B [p + (u:/p)] + 1/8 (lh [p + (u:/p)] + 0 . 5  + j0 .8661 (1/8 [p t. (W:/P)] + 0 .5  - JO.866) 

(5.16b) 

The poles of t h e  second term of Eq. (5.15b) can be found by solving 

2 2 
p + (0.5 + jO.866)Bp + w0 = 0 

and t h e  so lu t ions  are- 

P = z  ’ [-(0.5 + j0.866)B zt d(0 .5  + j0.866)2B2 - 4W2] 0 

1 1 = z C-(0.5+ j0.86613 f (&+ j&)1 = z C(-0.5B+6) - j(0.866BTr\rv)l 

where 

2 - 4w0 
2 u - v = B  

A 

uv = 3Bzh6 

u + v = + J(u - V I 2  + 4uv 
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These solutions can be writt 

B p1 

= (-0.25B - 0.5 - j(0.433 + 0. (5.17b) p2 

The other two poles can be found by solving 

p 2 + (0.5 - jO.866)Bp + wo 2 = 0 

o r  

p3 = (-0.25B + 0.56) + j(0.433 - 0.56) 

= (-0.25B - 0.5&) + j(0.433 + 0.56) p4 

(5.18a) 

(5.18b) 

(5.18~) 

then GB(p) can be written in partial-fraction form as 

2 a p + b  2 alp + bl - - BP 
GB(P) = 2 (p - p,) (P - P,) (P - P2) (P - P4) 

P + P + W 0  
(5.19) 

where al, a2, bl, and b2 are real constants and can be found in terms 

of B and w from Eqs. (5.16). For the present design problem, B = 1, 

w = 1.1456, u = 0.0448, v = 4.2948. Substituting these values into 
0 

01 
Eqs. (5.17) and (5.18) yields pl,p3 = -0.144 f j0.603; p2,p4 - - 

-0.356 7 j1.469. Substituting them into Eq. (5.19) obtains 

(5.20) 

T t the transfer function G,(p) of the bandpass fil- 

previous section. 
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Simi la r ly ,  t h e  next bandpass f i l t e r  of frequency range 700 t o  1100 Hz 
2 - (700 x 1100)/(400 x 400) = 4.813; 
02 - can be designed wi th  w 

u =  0 ,  and v = 18.25; t h e r e f o r e ,  

Bn = 1, 

p1,p3 = -0.25 C j1.704 

= -0.25 j2.57 '2 ' '4 

and 

P - 0.498 p + 0.351 0.502 p - 0.851 
G2(P) = 2 2 

P + P + 4.813 p + 0.5 P + 2.96 p + 0.5 p + 7.18 
(5.21) 

The r e a l i z a t i o n  of G2(p) is s i m i l a r  t o  G1(p). The r e a l i z e d  networks 

of G (p) a r e  shown i n  Figs. 34 and 35. By t h e  same token, G2(p), 
1 

G3(p), 

t e n t s  of t h e  constant r e g i s t e r s ,  a s  i n  Fig. 36. 

G4(p), . . , , G7(p) can be designed by simply changing the  con- 

Cascade Method: 

1 1 =- 1 - - 
2 s + l  s 2 + s + l  s 3 + 2 s  + 2 s + l  

1 1 1 =- 
s + 1 s + 0.5 + j0.866 s + 0.5 - j0 .866 

Now t h e  t ransformation can be made: 

t hen  

BP 
GB(P) = E. + (0 .5+ jO.866)Bp+wf] I. 2 + (0.5 - j 0 . 8 6 6 ) B p c w ~  2 P 2 +P+Wo 2 

BP2 

(5.22) 
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a. Rea l iza t ion  of G1(p) 

I 

i ?ladt I .3 I2 yladt I OUTPUT 

I 
I 

I 
I 

i 
I 
I I 

b. 

Fig. 

P 

p + p + 1.312 
Gla(p) = 

dj’la = dx - dYla - 1.312 Yladt 

34. REALIZATION OF Gla(p). 
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0.545 p + 0.105 

p + 0.288 p + 0.384 
a. Glb(p) = 

= 0.105 xdt - 0.384 y dt  + 0.545 dx - 0.288 dYlb 
d’lb l b  

x d t  
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

dx- - I 

k F  
I 
I 
I 
I 
I 
I 
I 
I 

0.455 p - 0,624 
b. Glc(p) = 

p + 0.712 p + 2.284 

= 0.455 dx - 0.712 dYlc - 0.624 xdt - 2.284 Ylcdt d%c 

Fig. 35. REALIZATION OF Glb(p) and Glc(p). 

65 SEL-68-084 



4 

I I 
I I 

Fig. 36. REALIZATION OF A BANK OF DIGITAL FILTERS. 

P1' Following the same procedure as in the parallel method, poles 

p2, p3, and p4 can be found as in E q s .  (5.14) and (5.15). Substituting 

B = 1, w = 1.1456, u = 0.0448, v = 4.2948 into Eqs. (5.14) and (5.15) 

and then into GB(p) yields 
0 

P P P 
G1(P)' = 2 2 p + P + 1.312 p + 0.288 p + 0.384 p + 0.712 p + 2.284 

(5.23) 

The digital realization of Gl(p)' 

are used; G2(p) ' , 
the overall configuration is a combination of cascade and parallel 

realization. 

is shown in Fig. 37, where 14 modules 

G3(p) ' , . . . . , G7(p) I can be similarly designed. Thus, 

It is seen from Eq.  (5.15) that if the sixth-order polynomial with a 

small error produced at one pole location is factorized, the remaining 

five pole locations will be affected; that is, a small coefficient pertur- 

bation (or truncation) may result in a large shift in root location. On 

the other hand, the factorized two-pole filter combination will result in 

better performance because the coefficient perturbation of the first fac- 

torized term will not change the pole position in the second and/or third 

terms. Therefore, it is advisable to use the cascade and parallel combi- 

nation in the design. 
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- 
- dyz 

- 

dx 

INPUT 
0 

C. 

Fig. 37. THE DIGITAL REALIZATION OF 

* dY 
4Y OUTPUT 

- 

G1(s)' OF EQ. (5.23). 

Digital Filters with Time-Varying Coefficients 

It is possible to design a digital filter with time-varying coeffi- 

cients. Because the transfer function of this type of filter is not de- 

fined, as are those in Chapter IV.A, a time-domain synthesis will be 
presented. The following example illustrates the realizability of this 

filter. 

Example 9. 

Suppose x(t) and y(t) are the input and output of a digital fil- 

ter in such a way that the following relation is satisfied: 

.?(t) + a(t) y(t) + b(t) $(t) + c(t) y(t) = c(t) x(t) (5.24) 

Design such a network. 

Solution. It is seen that if a(t), b(t), and 

the problem can be reduced to one of the typical 

problems. Now, with time-varying coefficients, 

differentiate the equation, 

c(t) are constants, 

digital-filter design 

t is necessary first ;0 

(5.25) 
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and then  t o  use d i g i t a l  i n t e g r a t o r s  t o  generate the  terms d (ay ) ,  d(by) ,  

d (cy ) ,  and d(cx) .  Note t h a t  

d(ay) = ady -k yda 

which can be generated by i n t e g r a t o r s ,  a s  shown i n  Fig. 38, where dy is  

an output of an i n t e g r a t o r ,  and where da i s  t h e  d i f f e r e n t i a l  of t he  in-  

put a ( t )  and i s  con t ro l l ab le  from the  outs ide.  By using more i n t e g r a t o r s ,  

t h i s  problem can be designed a s  i n  Fig. 39. 

The advantages or any appl ica t ion  of d i g i t a l  f i l t e r s  with nonconstant 

c o e f f i c i e n t s  have not been inves t iga t ed ,  but an i n t e r e s t i n g  case concern- 

ing  t h i s  p a r t i c u l a r  type of f i l t e r  w i l l  be discussed. 

A s  i s  known, t h e  loca t ion  of the  poles  of t h e  Chebyshev f i l t e r s  d i f -  

f e r s  only s l i g h t l y  from those of t h e  Butterworth f i l t e r s  [Ref. 241. There- 

f o r e ,  i f  t he  time-varying c o e f f i c i e n t s  a r e  changing i n  such a way t h a t  t he  

poles  a r e  s h i f t i n g  ho r i zon ta l ly  ( i n  t h e  s-plane) from t h e  Butterworth-pole 

locus t o  t h e  Chebyshev-pole locus ,  t he  d i g i t a l  f i l t e r  w i l l  have a changing 

magnitude square c h a r a c t e r i s t i c  from the  maximum f l a t  response t o  d i f f e r -  

en t  equal-r ipple  responses. 

Fig. 38. GENERATION OF d(ay).  

SEL-6 8-084 68 



Fig. 39. REALIZATION OF DIGITAL FILTER WITH TIME-VARYING COEFFICIENTS. 
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Example 10. 

For purposes of illustration, a low-pass filter with the following 

specifications has been designed [Ref. 261. 

1. The allowable deviation from the ideal in the passband must be 
equal to or less than 1/2 dB. The passband extends from 0 to 
100 Hz. 

2.  The attenuation must be at least 18 dB at frequencies higher 
than 200 Hz. 

Solution. The actual configuration of the network designed [Ref. 261 is 

shown in Fig. 40, and the transfer function is 

Y(s) 
6 

- -  0.36 x 10 v2 (SI 
2 6 6 - X(s) G(s) = - = 

vl(s' s3 + 125 s + 3.78 x 10 s + 0.72 x 10 

Fig. 40. LOW-PASS FILTER DESIGN OF EXAMPLE 10. 

For simplicity, the above low-pass filter can be synthesized by using 

the direct method, 

6 6 
y + 0.72 x 10 y + 125 y + 3.78 x 10 y = 0.36 x lo6 x 

+ 0.125 - dy + 3.78 dy + 0.72 dy = 0.36 dx 2 
lo6 lo3  

3.78 dy - 0.72'dy dy - -  dy - 0.36 dx - 0.125 - - 
1 o6 lo3 

and the equivalent digital realization is shown in Fig. 41. 

(5.26) 
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dx 0.36 
0 - - 

INPUT 

Fig. 41. EQUIVALENT CIRCUIT lU3ALIZATION BY DIGITAL ELEMENTS. 
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Chapter VI 

DIGITAL REALIZATION OF DRIVINGPOINT INlMITTANCE FUNCTIONS 

A. Driving-Point Impedance-Function Realization 

The driving-point impedance function Z (5) of a network is defined 1 
are, respec- I in and 'in as the ratio of Vin(s) to Iin(s), where 

tively, the input voltage and input current in Laplace transform form; 

namely, Z,(s> = Vin(s)/Iin(s). 

current transfer function G (s) defined as 

Consider a 1-port network, as shown in Fig. 42, with an internal 

I 

where I1(s) and 12(s) are the input and output currents, respectively, 

of the network function GI(s). Thus 

I -PORT NETWORK 

1 -------- r 
I I 1 

Fig. 42. FEEDBACK CONNECTION USED TO REALIZE 
THE DRIVINGPOINT IMPEDANCE FUNCTION. 
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Solving for GI(s) yields 

if 

Then 
R. 

where R1 is a constant (resistance). 

From the last two chapters, it is known that once the transfer func- 

tion of the network is specified, it can be realized by interconnecting 

the digital integrators. Therefore, once the desired driving-point func- 

tion Z,(s) is specified, GI(s) can be found. In this way the 1-port 

network with the desired Z,(s) 

Example 11. 

can be constructed, as in Fig. 42. 

Realize the following driving-point impedance function by using the 

prescribed technique 

so 1 

Eq 
- Ition. First, the transfer function G ( s )  mus be found. Us 

(6.5) obtains 
I - 

2 s (1 - 2R1) + ~ ( l  - Rl) + (2 - R1) R1 G I ( s )  =: 1 - - =  
z1 (SI s 2 + s + 2  
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Let Y ( s )  = R112(s) [note, here, that Y ( s )  is not the admittance func- 

tion] and X ( s )  = Vin(s), then: 

2 (s2 + s + 2) Y ( s )  = [ s  (1 -2R1) + s(l - Rl) + (2 -Rl)l X ( s )  

or  

Transforming the above expression back to the time domain yields 

or 

The network realized for GI(s) is shown in Fig. 43. By a connec- 

is as shown tion similar to Fig. 42, the network realization for 

in Fig. 44. The input current to ADC (analog-to-digital converter) has 
been assumed to be zero. This method needs a controllable current source 

at the output; this is not easy to obtain. The equivalent analog networks 

realized by the Brune method and the Bott and Duffin method are shown in 

Figs. 45 and 46 [Ref. 241. 

Z,(s) 

An alternative method of realizing the driving-point impedance func- 

tion is suggested below. 
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Fig. 43. REALIZATION OF 
2 

G ( s )  = [s (1-2R1) + s ( l - R 1 )  + ( 2 - R l ) l  /(s2 +S+2). 

o--cc- 
I#) - 

_ .  - DAC z - Fig. 43 d x  i,(tl - 
AOlC DIGITAL 

2 2 
Fig. 44. REALIZATION OF Z,(s) = (s  + s +2) /(2 s + s + 1). 

INCREMENT 
INPUT G (SI 

0 :: b 
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M = 2  
0 - - - 7 r  1 

Fig. 45. BRUNE NETWORK REALIZATION OF Z1 (s) = (s 2 + s + 2) /(2 s 2 + s; 1 ) .  

I I 

Fig. 46. THE BOTT AND DUFFIN REALIZATION OF 
z (s) = (s2 + s + 2)/(2 s2 + s + 1). 1 

Changing the configuration of Fig. 42 to Fig. 47, define the voltage 

transfer function as 

v2 (SI 
(6 .6)  

GV(s) = Vin(S) 

and assume that the output voltage has a very small output impedance such 

that 

V2(S) - V i n W  
R2 

12(s) = 

77 

(6.7) 
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-- I-PORT NETWORN 

Fig. 47. EQUIVALENT OF FIG. 42. 

From Eq. (6.5) 

then 

R1 [Gv(s) - 11 = 1 - - - R1 _ -  
R2 z1 (s) 

Solving for G (s) obtains 
V 

R2 R2 
R1 z1 (SI GV(s) = - + 1 - - 

(6.8) 

(6.9) 

With Z , ( s )  specified, G (s)  can be found, and Zl(s> can be realized 

without difficulty by interconnecting the digital integrators. 
v 

By this alternative method, the network of Example 11 can also be 

realized as follows: 
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2 
R2(2 s + s  + 1) R2 

R1 s + s + 2  
2 GV(s) = - + 1 - 

v2 Y (s) R2 2 
- Vin(S) X ( S )  R1 s 2 + s + 2  

R s + R 2  
- = -  = 1 + - - 2R2 + 

where 

y ( t )  = t h e  s o l u t i o n  of 
2 

djr2(t) = R2 d k ( t )  + R2 x ( t )  d t  - dy2( t )  - 2y2(t)  d t  

The r e a l i z e d  network is shown i n  Fig. 48. 

I I 

Fig. 48. ALTERNATE REAT.JZATION OF Z,(S>. 
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B. 

The driving-point admitta Y1 (SI a n  is ined 

Iin(s) and V ( s )  are, re- in as the ratio of I. ( 8 )  to Vin(s), where 

spectively, the input current and input voltage in Laplace transform form, 

namely, 

In 

Iin(S) 

Y1(S) = Vin(S) 
(6.10) 

In contrast to the last section, consider a 1-port network, now using the 

voltage feedback rather than the current feedback because the input is 

assumed to be a current-controlled source. 

Referring to Fig. 48, define an internal-voltage transfer function 

H ( s ) ,  such that 

Because V,(s) = Vin(s) + V2(s), 

or  

Iin(S) 
H(s) = - v p  Y,(S) 

(6.11) 

(6.12) 

If a fixed resistor R i  has been connected across terminals 1-2', 

then 

(6.13) 
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thus, 
(6.14) 

which is similar to Eq. (6.5). By the methods described in the last sec- 

tion, the transfer function H ( s )  can be easily realized by using digital 

integrators. With H ( s )  realized, the desired driving-point admittance 

Y,(s)  can be obtained by connecting H ( s ) ,  as shown in Fig. 49. 

Example 12. 

Realize the following driving- 

point admittance function 

2 Iin(d 

1 2 s  + s + 2  Y i n W  
s + s + 2  - Y (SI = - 

Solution. First, find the trans- 

fer function H ( s )  corresponding 

to the given Y1 ( s )  : 

I-PORT NETWORK 
I--------- 

Fig. 49. FEEDBACK CONNECTION USED 
TO REALIZE DRIVINGPOINT ADMIT- 
TANCE FUNCT I ON. 

2 2 R;(s + s +2) Y(s) = [(R; -2)s + (R; - 1)s + 

o r  

I 
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Transforming back to the time domain yields 

or 

dy = dx + [(I -e) x -  y] dt + j[k -$)~-2y] dt2 

The realized network of H ( s )  and Y,(s) are given in Figs. 50 

and 51, respectively. 

2 
Fig. 50. REUIZATION OF H ( s )  = (Ri-2)~ + (R'-l)s + (2R;-1) 1 

R;(s + s  +2) 2 

I I 
2 2 

Fig. 51. REALIZATION OF Y,(s) = ( s  + s +2)/(2 s + s + 1). 

An interesting result can be drawn from Examples 11 and 12, where 

it is seen that if the values of R1 and Ri are normalized or made 

= R' = 1 ohm, then G ( s )  is exactly the same as H(s). Therefore, 

the same function can be realized as either an admittance or an imped- 

ance function, depending on how the integrators are connected. 

R1 1 

The following two examples show the realization of a single inductor 

and a single capacitor by use of digital building blocks. 
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Example 13. 

Realize Z l ( s )  = s L  by using the above techniques. 

Solution. By using Eq. (6.51, 

Let 

then 

In the time domain: 

y(t) = x(t) - - R1 L Ix(t) dt 

or 

R1 dy = dx - - x dt L 

The network of G(s) can be realized, as in Fig. 52, and the single in- 

ductor of value L can be realized as in Fig. 53. 

Fig. 52.  REALIZATION OF Gis) = (sL - R1)/sL. 
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Fig. 53. REALIZATION OF A SINGLE INDUCTOR, Z l ( s )  = sL. 

Note that if x(t) is a sinusoidal function whose time integral 

stays finite, the output y(t) 

y(t) = x(t) - - RiC jx(t) dt 

will remain finite; otherwise, the integral grows increasingly larger and 

eventually will cause overflow in the y(t) register which, in turn, will 

not perform the correct operation. From another point of view, the cur- 

rent y(t)/R1, flowing through the inductor, will increase indefinitely 

after a step voltage x(t) = constant is applied: 

iL(t) = 1 v(t) dt 

ExamDle 14. 

Realize a single capacitor Y , ( s )  = sC. 
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Solution. By using Eq. (6.14) , 

In t h e  t i m e  domain: 

x ( t )  d t  or dy = dx - - y ( t )  = x ( t )  - - dt 
(R:C) R i  C 

"he network of H ( s )  can be r e a l i z e d ,  a s  shown i n  Fig. 54. With 

H ( s )  r e a l i z e d ,  t h e  s i n g l e  capac i tor  C can be e a s i l y  obtained,  a s  shown 

i n  Fig. 55. 

Fig. 54. REALIZATION OF H ( s )  = (sR; - l ) / sR;C = Y ( s ) / X ( s ) .  

From Example 13 it is seen t h a t  with t h e  length of t h e  r e g i s t e r s  suf- 

f i c i e n t l y  long, an almost i d e a l  inductor  could be t h e o r e t i c a l l y  constructed; 

t h a t  i s ,  a c i r c u i t  with a very high Q can be obtained. From t h e  r ea l i za -  

t i o n  techniques presented i n  t h i s  r e p o r t ,  it is  obvious t h a t  any driving- 

poin t  immittance func t ion  w i t h  negat ive values o r  w i t h  poles  i n  the  r igh t -  

ha l f  of t he  complex frequency plane can be r ea l i zed  without add i t iona l  

e f f o r t .  
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Fig. 55. REALIZATION OF A SINGLE CAPACITOR. 

Example 15. 

Realize the following immittance functions: 

a. Z ( s )  = -s (negative inductor, L = -1) 

b. Y,(s)  = s-1 (tunnel diode, C = 1, R = -1) 
1 

Solution. 

a. Using Eq. (6.9) 

R2 v2(s)  Y ( s )  + - =  3- + 1 -5 = (1 +?) s Vi&) x(s) 
R2 

R1 -S 
GV(s) = - 
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Transforming back to the time domain: 

or 

dy = (1 + ?) d x  + R2 x d t  

m e  network with the transfer function G (s) can be designed easily, as 

shown in Fig. 56; with realized, the negative inductor can be ob- 

tained, as shown in Fig. 57. 

V 

Gv(s) 

I- dy ( t )  OUTPUT 

A - d y  ' C  
- 

xdt 

X 

dx 
INPUT 

Fig. 56. REALIZATION OF G v ( s )  = (1 +R2/R1) + R 2 / s .  

Fig. 57. REALIZATION OF Z,(s) = -s. 
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b. Using Eq. (6.14), 

then 

I n  t h e  t i m e  domain: 

or 

The network with H ( s )  = 1 - I / I R ' ( s  -1)] can be r ea l i zed ,  a s  can the  

tunnel  diode ( see  Figs. 58 and 59). 
1 

Fig. 58. NETWORK OF H ( s )  
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F i g .  59. NETWORK OF Y , ( s )  = s - 1. 

89 SEL-68-084 





Chapter VI1 

CONCLUSION 

A. Summary of Results 

The use of integrated digital building blocks to realize network 

functions has been initiated, and the feasibility has been studied. Two 

types of modules (digital integrator and adder) have been proposed as the 

semi-universal building blocks to construct the network functions whose 

inputs and outputs are digital increments. Analog signals also can be 

handled by the analog-to-digital incremental converter and the digital- 

to-analog converter. 

For high-speed operation, the proposed digital integrator has been 

implemented by the modified trapezoidal-integration method and by the 

signed-digit number system. A technique to obtain variable precision 

is also achieved. 

Optimization is performed on the digital modules, subject to a 

minimum-cost criterion, resulting in a synthesis procedure for obtain- 

ing network realization with a minimum number of digital modules as well 

as with best performance. Essentially, the transfer function can be 

realized by the digital modules alone; however, the immittance function 

or the conventional-element replacement can only be made possible with 

the help of the analog-to-digital incremental converter and digital-to- 

analog converter. 

1 

The idea of using digital incremental data as the only infor- 

mation transfer in the system can be applied to the present prevailing 

digital-computer realization technique. The principal advantages are 

small round-off error and more accuracy. The application of incremen- 

tals to digital-computer realization of the transfer function is dis- 

cussed in Appendix H. 

B. Discussion 

1. Advantages 

The advantages of the realization of network functions by 

using digital elements are 
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a. 

b. 

C. 

d. 

e. 

f. 

g. 

h. 

small physical size (integrated circuits) in which size is 
independent of frequency, especially at f < 1 Hz 
no inductor or  capacitor 

no realizability problems, such as negative elements or  multi- 
plicity of poles 

easy implementation of linear and nonlinear networks 

no drift problems (center frequency can be steadily maintained) 

improvement of accuracy by increasing lengths of the registers 

almost no difficulty in selecting, specifying, and storing 
components 

easily made modifications to parameters of the circuit to fit 
individual needs with no physical change. 

The advantages of the two-element module are 

a. 

b. 

C. 

d. 

e. 

f. 

g. 

2. 

Digital integrating elements can be cascaded to increase 
precis ion. 

Operation is high speed, handling signal input frequencies up 
to hundreds of kilohertz, and the integrator operates at one 
iteration per cycle. 

The digital integrating element can be used as a constant multi- 
plier and an incremental multiplier. 

The summing element can also be used as an output multiplier 
(anywhere between -7 to 7 times). 

There is a high repeatability of cells inside the module. 

Only two kinds of elements are needed to realize the whole 
class of network functions. 

There is a high gate-to-pin ratio. 

Comparisons between Analog and Digital Realizations 

It is of interest to compare the digital realization of network 

functions with those discussed in the newly published book, Active Inte- 

grated Network Synthesis [Ref. 111: 

a. The network functions in Ref.ll are realized primarily by using 
one of three types of integrated modules--integrated gyrator, 
operational amplifier, or negative impedance converter (exclud- 
ing the distributed networks)--as the basic building blocks to 
deal with analog signals of frequencies ranging from dc to the 
lower part of the MHz region. In contrast, the basic building 
block in this research is the digital two-element module, and 
the frequencies of the analog signal range from dc to a few 
hundred kHz with the help of the ADIC (analog-to-digital in- 
cremental converter) and the DAC (digital-to-analog converter). 
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b. In comparison to analog realization in the operating frequency 
range of the digital hardware, digital realization has no para- 
sitics problem, no need for temperature compensation, no criti- 
cal component problem, no repeatability problem of the solution, 
no drift problem, and it is more accurate. 

c. Optimum analog realization would involve minimization of the 
number of capacitors, whereas the optimum digital realization 
would involve a minimum number of digital modules. 

d. Time is not the only independent variable in the digital reali- 
zation; hence, nonlinear networks can also be realized. In the 
analog domain, time is the only independent variable. 

e. To increase reliability, redundant circuits or  majority voting 
logics can be very helpful, but none of these will help the 
ana log rea 1 iza t ion. 

f. Coefficient setting will be a problem in both analog and dig- 
ital realizations. In analog realization, unless very accu- 
rate integrated potentiometers can be made, a large number of 
different-valued precision resistors will be required. In 
digital realization, the coefficient-setting problem is dif- 
ferent and will be discussed in Section C. 

g. In both analog and digital realizations, cascade synthesis 
offers the best performance and lowest sensitivity. 

h. Variable precision can be achieved in digital realization. 

i. Gyrator conductance must be changed from case to case. Iden- 
tical (unique) gyrators cannot be achieved unless some exter- 
nal means can be applied to change the gyrator conductance. 
The same problem exists in the uniqueness of the capacitance 
value. 

3. cost - 
Cost is always a major concern. In microelectronics, a single 

chip can be used to realize a trivial or  a complicated Boolean function 

at essentially the same expense; therefore, the Quine-McCluskey simplifi- 

cation method to reduce the number of gates in a Boolean function may not, 

in fact, reduce the cost oft the chip. Concerning fabrication cost, the 

optimum number of gates per chip varies with the passage of time (50 

gateshhip in 1965, 70 gateshhip in 1966, 1000 gateshhip in 1970, and 

perhaps 5000 gateshhip in 1972) [Refs. 18 and 191. Thus, the few hun- 

dred gates in the proposed digital integrating element may seem awesome, 
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but as technology further advances, the two-element module will become 

cheaper. One factor that could help to cut down the price is the tre- 

mendous quantities of modules needed for network construction. 

4. The Signed-Digit Number System 

In the design of the digital two-element module, the reasons 

for choosing the signed-digit number system over the conventional one 

are threefold: (1) the carry-propagation chain is eliminated, thus speed- 

ing up the internal addition and subtraction operations; (2) the data 

that are transferred, external to the two-element module, are incremental 

data that can be easily and quickly converted to the conventional number 

system, if required; and (3) if higher precision is needed propagation 

takes no longer time, and the complexity of the logic gate structure is 

not increased. 

5. Current-Mode Circuits 

The current-mode switching circuitry can be used to implement 

logic-gate circuitry because current-mode circuits have the potential 

for nanosecond systems [Ref. 271. 

6. Prewired Module Packages 

It is also possible to use prewired (on a printed circuit 

board) modules to form any second-, third- or fourth-order transfer- 

function packages. The values of the constant multipliers (the coeffi- 

cients of the transfer function) can be either fixed for specific appli- 

cations o r  adjusted to fit any case. 

C. Recommendations for Further Study 

This investigation has been primarily a feasibility study concerned 

with how the realization and design of network functions utilizing 

variable-precision digital modules can be achieved. The proposed two- 

element module and the internal structure o f  the modules lay the ground- 

work for future hardware design. Development and testing of prototype 

digital two-element modules would be useful in deriving further infor- 

mation about this system. 
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Lis t ed  below a r e  suggestions f o r  fu tu re  research ,  based on the  

s t u d i e s  descr ibed i n  t h i s  r epor t :  

1. Optimization on the  s t r u c t u r e  of d i g i t a l  modules can be reached 
i f  more exact  information and c o n s t r a i n t s  concerning t h e  r e l a -  
t i onsh ips  of t he  number of p ins ,  ga t e s ,  and cos t  can be found 
and spec i f ied .  This opt imizat ion is  subjec t  a l s o  t o  the  m i n i - ,  
mum delay i n  t h e  modules. 

2. A new technique is needed to  discover how t h e  c o e f f i c i e n t  set- 
t i n g  of any t r a n s f e r  func t ion  can be done so t h a t  t h e  s e t t i n g  
w i l l  be f a i r l y  easy,  and once se t ,  t he  c o e f f i c i e n t  w i l l  remain 
unchanged a t  some l a t e r  power-on-condition, regard less  of how 
many t i m e s  t h e  power has  been turned o f f .  One f e a s i b l e  method 
is t o  connect more tes t -poin t  p ins  (not input-output pins)  t o  
t h e  Y-regis ters  of the d i g i t a l  i n t e g r a t o r ,  which can be exter-  
n a l l y  access ib le  by a spec ia l ly  designed t o o l  so t h a t  the set- 
t i n g  of t h e  c o e f f i c i e n t s  can be e a s i l y  performed a f t e r  each 
power off-on sequence. 

3. To bu i ld  a powerful high-speed system, i t  is f e a s i b l e  t o  de- 
s ign  e i t h e r  a hybrid system involving the  proposed in tegra ted  
d i g i t a l  modules and those in t eg ra t ed  analog modules discussed 
i n  Ref. 11 or a combined d i g i t a l  system using the proposed 
d i g i t a l  modules and the  e x i s t i n g  general-purpose d i g i t a l  
computer. 
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Appendix A 

- DIGITAL 
I ADDER- - SUBTRACTOR 

THE ANALOG-TO-DIGITAL INCREMENTAL CONVERTER 

- INCREMENTS - 
I - 

The analog-to-digital incremental converter (ADIC) is a device that 

converts the difference between two analog quantities to digital form. 

In particular, if an analog signal is applied to the input of the ADIC, 

the difference, o r  increment, of the analog quantities measured at two 

consecutive bit times is converted to digital form. 

One implementation is shown in Fig. 60, where the operational ampli- 

fiers are employed to obtain the difference between the signals at two 

consecutive bit times. If available, a difference amplifier can be used 

to replace the two operational amplifiers. The gain of the amplifiers 

does not have to be unity. When necessary, gain adjustments can be made 

to fit the analog-to-digital converter (ADC) input levels. 

.. ACCUMULATOR 

X ( t i )  
0 - 0 I G I TAL 

v 
ANALOG ADC INCREMENTS, - 

INPUT 
AT t:ti 

0 - 0 I G I TAL 
ANALOG ADC INCREMENTS, - 

INPUT 

Fig. 60. ONE IMPLEMENTATION OF ADIC. 

Similarly, another possible implementation is shown in Fig. 61, where 

the analog signal is converted to digital form first, then subtracted from 

the previous digital quantity by a digital adder-subtractor. The differ- 

ence output is the digital increment. 

97 SEL-68-084 



Of the  two implementations, t he  f i r s t  (Fig. 60) is  prefer red  and a 

few of i t s  advantages can be noted. The input l e v e l  t o  .the ADC i s  l imi ted ;  

t he re fo re ,  fewer comparators a r e  needed and more accuracy can be achieved. 

The conversion t i m e  of t h e  ADIC i n  Fig.  60 i s  much less than t h a t  of the  

second implementation because only increments a r e  t r ans fe r r ed  r a t h e r  than 

f u l l  words. Also, t h e  d i f f e rence  between the  two analog q u a n t i t i e s  can 

be obtained immediately from t h e  d i f f e rence  ampl i f i e r ,  whereas d i g i t a l  

sub t r ac t ion  takes  t i m e .  
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Appendix B 

y4 

LOGIC DESIGN OF THE DIGITAL INTEGRATING ELENfENT 

y3 y2 YI A z , , v " l  FLOW 

Fig. 62. INTERNAL BLOCK STRUCTURE OF DIGITAL INTEGRATING ELENLENT. 
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1. Logic Design for Cell A 

Fig. 63. 1/0 PINS OF CELL A. 

TRUTH TABLE FOR CELL A 

w w w w  8 4 2 1  a a a a  8 4 2 1  c c  b2 bl 2 1  I 
0 0  0 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

l o l l  
1 0 1 0  

1 0 0 1  

0 0  0 1  0 0 0 0  

0 0 0 1  

0 0  0 0 0 0  

0 0  0 0 0 1  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 1 0 1  

8 1  1 1 0 0  

0 1  1 1 0 1  

0 0  1 1 1 1  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  1 1 0 0  

0 0  1 0 1 1  

1 1  0 1 0 0  

1 1  0 0 1 1  

0 0  0 0 0 1  

0 0  0 0 1 0  
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1 0 0 1  

0 0  1 1  0 0 0 0  

0 0 0 1  
0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

1 0 1 0  

1 0 0 1  

0 1  0 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  
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0 1 0 0  

0 0  1 1 1 1  

0 0  0 0 0 0  

0 0  0 0 0 1  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 1 0 1  

0 1  1 1 0 0  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  1 1 0 0  

0 0  1 0 1 1  

1 1  0 1 0 0  

1 1  0 0 1 1  

1 1  0 0 1 0  

0 0  0 0 0 1  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 1 0 1  



b2 bl 2 1  
a a a a  8 4 2 1  

0 0  0 1 0 1  

0 1 1 0  

0 1 1 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

1 0 1 0  

1 0 0 1  

0 1  0 1  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

1 0 1 0  

1 0 0 1  

0 1  1 1  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

c c  

0 1  

w w w w  t2 8 4 2 1  

1 1 0 0  0 1  

0 1  1 1 0 1  

0 1  1 1 1 0  

0 0  0 0 0 0  

0 0  1 1 1 1  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  1 1 0 0  

0 0  1 0 1 1  

1 1  0 1 0 0  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 1 0 1  

0 1  1 1 0 0  

0 1  1 1 0 1  

0 1  1 1 1 0  

0 1  1 1 1 1  

0 0  0 0 0 1  

0 0  0 0 0 0  

0 0  1 1 1 1  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  1 1 0 0  

0 0  l o l l  
0 0  0 0 0 0  

0 0  0 0 0 1  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 1 0 1  



b2 bl 2 C 1 C 
8 

Et 
4 

a 
2 a 1 a 

0 1  1 1  0 1 1 0  

0 1 1 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1  

1 1  

1 1 0 0  

1 0 1 1  

1 0 1 0  

1 0 0 1  

0 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

0 1 1 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

l o l l  
1 0 1 0  

1 0 0 1  

0 1  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

0 1 1 0  

w w w w  t2 8 4 2 1  

0 1  

0 1  

0 0  

0 0  

0 0  

0 0  

0 0  

1 1  

1 1  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 1  

0 0  

0 0  

0 0  

0 0  

1 1  

1 1  

1 1  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 1  

1 1 0 0  

1 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

0 1 0 0  

0 0 1 1  

1 1 1 1  

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 0 0  

1 1 1 0  

1 1 0 1  

1 1 0 0  

l o l l  
0 1 0 0  

0 0 1 1  

0 0 1 0  

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 0 0  
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a a a a  
8 4 2 1  

c c  
b2 bl 2 1  

1 1  0 1  0 

1 

1 

1 

1 

1 

1 

1 

1 1  1 1  0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

1 

1 

1 

0 

0 

1 

1 

0 

0 

0 

1 

1 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

w w w w  t2 tl 8 4 2 1  

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

1 

0 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

0 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

0 

1 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

1 

0 

1 

0 

1 

0 

1 

Boolean Equations: 

w 

w = b b c c ( a a a  + a a a  + a a a )  2 2 1 2 1  8 4 2  8 4 2  8 4 1  

= al @ bl @ c1 1 
- - - -  - -  

- - - -  - -  - 
+ b b c c ( a a a a  + a a a a  + a a a a  + a a a  + a a a a )  2 1 2 1  8 4 2 1  8 4 2 1  8 4 2 1  8 2 1  8 4 2 1  

- -  - -  - - -  - -  - -  - -  
+ b b c c ( a a a  + a a a  + a a a  + a a a  + a a a a  + a a a a )  2 1 2 1  8 2 1  8 4 2  8 4 1  8 2 1  8 4 2 1  8 4 2 1  
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- -  - -  - - - -  - 
+ K b c c ( ; a ;  + a a  + a a a a  + a a a a  + a a a a  + a a a a )  2 1 2 1  4 2 1  8 4  8 4 2 1  8 4 2 1  8 4 2 1  8 4 2 1  

- - -  - - - -  
+ E b c c ( a a a  + a a a  + a a a  + a a a )  2 1 2 1  8 4 2  8 4 2  8 4 2  8 4 2  

- -  
+ g b c c  ( a a a  + a 8 a 4 a 2 + a a a )  

+ b b c c ( a a a  + a a a a  + a a a a  + a a a  + a a a  + a a a )  

2 1 2 1  8 4 2  8 4 1  
- -  - - -  - -  - - -  - -  

2 1 2 1  8 2 1  8 4 2 1  8 4 2 1  8 4 2  8 4 1  8 4 2  

- -  
+ b b c c ( a a a  + a a a  + a ; a )  2 1 2 1  8 4 2  8 4 2  8 4 1  

- -  - 
+ b b c c ( a a  + a a a  + a a ; a )  2 1 2 1  8 2  8 4 2  8 4 2 1  

- - - -  - -  - - -  - - 
w = b b c c ( a  + a a a ) + b b c c ( ; a  + a a a  + a a a  + a ; )  4 2 1 2 1  4 8 4 1  2 1 2 1  8 4  4 2 1  8 4 1  8 2  

- -  - - - -  
+ b b c c ( a a a a  + a a  + a a  + a a a )  2 1 2 1  8 4 2 1  4 2  4 1  8 2 1  

- -  - - - 
+ ? ; b c c ( ; a  + a a a  + a a a  + a a a  + a a a )  2 1 2 1  8 4  8 2 1  8 4 1  8 4 2  8 4 1  

- + c2blc2cl(;8a4 + a4a2 + a4z2> + b b c c (a  + a8al) 2 1 2 1  4 

- -  - - - -  
+ b b c c ( a a a a  + a a  + a a  + a a a ) + b b c c ( a  + a ; )  2 1 2 1  8 4 2 1  4 2  4 1  8 2 1  2 1 2 1  4 8 1  

- - -  - -  
+ b b c c ( a a a  + a a  + a a a )  2 1 2 1  8 4 2  4 2  8 2 1  

- - - -  
w = b b c c ( a a  + a a  + a a a )  8 2 1 2 1  8 4  4 2  8 2 1  

- - -  - - 
+ b b c c ( a a a  + , a a a  + a a a  + a a ; )  2 1 2 1  8 4 2  4 2 1  8 4 2  8 4 1  

- -  - - - -  
+ b b c c ( a a a a  + a a a  + a a )  2 1 2 1  8 4 2 1  4 2 1  8 4  

- -  - - - 
+ ? ; b c c ( ; a a  + a a a  + a a a  + a a a  + a a ; )  2 1 2 1  8 4 2  8 4 2  8 4 2  4 2 1  4 2 1  

- 
+ K b b c . ( ; a  + a 8 a 4 + a 4 G 2 )  + f ; b c c  ( a a  + a a  + a a a )  8 2 1  2 1 2 1  8 4  2 1 2 1  8 4  4 2  

- -  - - - -  
+ b b c c ( a a a a  + a a  + a a a ) + b b c c ( a a  + a a  + a a a )  2 1 2 1  8 4 2 1  8 4  4 2 1  2 1 2 1 4 2  8 4  8 2 1  

- - -  + b b c c ( a  a a + a a a + a8a4al) 2 1 2 1  8 4 2  8 4 2  
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2. Logic Design for Cell B 

ai6 
a 4  
a 2  
a 1  

b 4  
b 2  
b l  

b16 

'2 
+ I  

CELL 
8 

w16 
w4 
w 2  
W I  

& 

Fig. 64. 1/0 PINS OF CELL B. 

TRUTH TABLE FOR CELL B 

w w w  1 6 4 2 1  a a a  b16 b4 b2 bl 1 t2 tl W 1 6 4 2 1  a 

0 0 0 0  0 0 0 0  

0 0 0  1 

0 0  1 0  

0 0 1  1 

0 1 0 0  

0 1 0 1  

1 1  1 1  

1 1  1 0  

1 1 0 1  

1 1 0 0  

L O  1 1  

0 0 0 1  0 0  0 0 

0 0 0  1 

0 0  1 0  

0 0 1  1 

0 1 0 0  

0 1  0 1 

1 1  1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0  1 1  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0  

0 1  

0 0  

0 0  

0 0  

0 0  

0 0  

0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 . 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 0 0  

0 0 0 0  

1 1 . 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  
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b16 b4 b2 bl a a a  1 6 4 2 1  a 

0 0 1 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 ' 1 0 0  

1 0 1 1  

0 0 1 1  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

0 1 0 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 L O O  

1 0 1 1  

0 1 0 1  0 0 0 0  

107 

16 "4 w2 "1 I W 

0 0  0 0 1 0  

0 0 1 1  0 0  

0 0  0 1 0 0  

0 0  0 1 0 1  

0 1  1 1 0 0  

0 1  1 1 0 1  

0 0  0 0 0 1  

0 0  0 0 0 0  

0 0  1 1 1 1  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 1 0 1  

0 1  1 1 0 0  

0 1  1 1 0 1  

0 1  1 1 1 0  

0 0  0 0 1 0  

0 0  0 0 0 1  

0 0  0 0 0 0  

0 0  1 1 1 1  

0 0  1 1 1 0  

0 0  0 1 0 0  

0 0  0 1 0 1  

0 1  1 1 0 0  

0 1  1 1 0 1  

1 1 1 0  0 1  

0 1  1 1 1 1  

0 0  0 0 1 1  

0 0  0 0 1 0  

0 0  0 0 0 1  

0 0  0 0 0 0  

0 0  1 1 1 1  

0 0  0 1 0 1  
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0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 L O O  

1 0 1 1  

1 1 1 1  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

1 1 1 0  0 0 0 0  

0 0 0 1  

1 1 1 1  

0 1  0 0 0 0  

0 1  0 0 0 1  

0 0  0 1 0 1  

0 0  0 1 0 0  

0 0  0 0 1 1  

0 0  0 0 1 0  

0 0  0 0 0 1  

0 0  1 1 1 1  

0 0  0 0 0 0  

0 0  0 0 0 1  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  1 1 0 0  

0 0  1 0 1 1  

1 1  0 1 0 0  

0 0  1 1 1 0  

0 0  1 1 1 1  



1 0 1 1  

1 1 0 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 . 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

1 0 1 1  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 0  

0 0  1 1 0 0  

0 0  1 1 0 1  

0 0  1 1 1 0  

0 0  1 1 1 1  

0 0  0 0 0 0  

0 0  0 0 0 1  

0 0  1 0 1 1  

0 1 0 0  1 1  

1 1  0 0 1 1  

1 1  0 0 1 0  

1 1  0 0 0 1  

0 0  1 0 1 1  

0 0  1 1 0 0  

0 0  1 1 0 1  



16 
a 

0 0  

1 . 1  

1 1  

1 1  

1 1  

1 1  

1 1  

0 0  

0 0  

0 0  

0 0  

0 0  

1 1  

1 1  

1 1  

I 

~1 
~1 1 

4 a 2 a 1 a b16 b4 b2 bl t2 16 W 4 
w 2 W 1 W 

1 0 1 1  0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

1 0 1 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

0 0  1 1 1 0  

0 0  1 1 1 1  

0 0 0 0  

0 1 0 0  

0 0 1 1  

0 0 1 0  

0 0 0 1  

0 0 0 0  

0 1 0 0  

1 0 1 1  

1 1 0 0  

1 1 0 1  

1 1 1 0  

1 1 1 1  

0 0 1 1  

0 0 1 0  

0 0 0 1  

0 0 0 0  

1 1 1 1  

3.  Logic Design for C e l l  C 

AX 

Fig. 65. 1/0 PINS OF CELL C. 

Note that b b b b has values of decimal 0, +3, o r  24,  and i ts  value 

depends on z z 
8 4 2 1  

2 1' 
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TRUTH TABLE FOR CELL C-1 

z z  2 1  

0 0  

0 1  

1 1  

b8 b4 b2 b1 

0 0 0 0  

0 1 0 0  

1 1 0 0  

TRUTH TABLE FOR CELL C-2 

z z  2 1  

0 0  

0 1  

1 1  

b8 b4 b2 bl 

0 0 0 0  

0 0 1 1  

1 1 0 1  

TRUTH TABLE FOR CELL C 

x x  = I 2 1  

a8 a4 a2 al 1 8 4 2 1  b b b b  

0 0 0 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

l o l l  
0 0 1 1  0 0 0 0  

0 0 0 1  

For C e l l  C-1 

b8 = z2 

1 b = Z  4 

2 1 
b = b  = O  

For C e l l  C-2 

b8 = b4 = z2 

b 2 = z z  2 1  

bl = z1 

- 

01 x x  = 1 1  2 1  

t 2 t l  w8 "4 w2 w1 I t2 tl w8 w4 "2 w1 I 
0 0  0 0 0 0  

0 0  0 0 0 1  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 1 0 1  

0 0  1 1 1 1  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  1 1 0 0  

0 0  1 0 1 1  

0 0  0 0 1 1  

0 0  0 1 0 0  

0 0  0 0 0 0  

0 0  1 1 1 1  

0 0  1 1 1 0  

0 0  1 1 0 1  

0 0  1 1 0 0  

0 0  l o l l  
0 0  0 0 0 1  

0 0  0 0 1 0  

0 0  0 0 1 1  

0 9  0 1 0 0  

0 0  0 1 0 1  

0 0  0 0 1 1  

0 0  0 0 1 0  
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0 0 1 1  

0 1 0 1  1 1 1 0  

1 1 1 1  

1 1 1 0  0 0  0 0 0 1  0 0  0 1 0 1  

1 1 0 1  1 1 0 0  

1 1 1 1  1 1 0 1  

l o l l  1 1 1 0  

0 0 0 1  0 0  0 1 0 1  0 0  0 0 1 1  

0 0 1 1  

0 1 0 1  

1 1 1 1  

1 1 0 0  

1 1 0 1  0 0  0 0 0 1  1 1 0 1  

1 1 1 0  

1 0 1 1  1 1 1 1  

1 1 0 1  

1 0 1 1  

0 0 1 1  0 0  0 0 0 0  1 1  0 1 0 0  

1 1  0 0 1 1  

0 1 0 1  d010 

1 1 0 1  
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x x  = O l  
2 1  

b b b b a8 a4 a2 al  8 4 2 1  t2 w8 "4 "2 w1 

1 1 0 0  0 0 0 0  

0 0 0 1  

0 0 1 0  

0 0 1 1  

0 1 0 0  

0 1 0 1  

1 1 1 1  

1 1 1 0  

1 1 0 1  

1 1 0 0  

1 0 1 1  

I 

0 0  1 1 0 0  

0 0  1 1 0 1  

0 0  1 1 1 0  

0 0  1 1 1 1  

0 0  0 0 0 0  

0 0  0 0 0 1  

0 0  l o l l  
1 1  0 1 0 0  

1 1  0 0 1 1  

1 1  0 0 1 0  

1 1  0 0 0 1  

x x  = 1 1  
2 1  

t2 tl w8 w4 "2 w1 

0 0  1 1 0 0  

0 0  1 0 1 1  

1 1  0 1 0 0  

1 1  0 0 1 1  

1 1  0 0 1 0  

1 1  0 0 0 1  

0 0  1 1 0 1  

0 0  1 1 1 0  

0 0  1 1 1 1  

0 0  0 0 0 0  

0 0  0 0 0 1  

Boolean Equations: 

- - -  - -  - -  - -  
tl = x x  [b (a  a a a + a  a a )  + E b  (a a a + a  a a )  2 1  2 8 4 2 1  8 4 2  8 4  8 4 2  8 4 2  

- 
+ b 8 1  b (a 8 4 2  a a + a8a4) + b8Fl(a8a4 + a8a2)1 

- 
+ x x [ b ( a a  + a a a ) + E b ( a a  + a 8 a 2 + a a )  8 1  2 1  2 8 4  8 4 2  8 4  8 4  

- 
+ b b (a a a + a8a4) + b8bl(a8a2 + a8a4)1 8 1  8 2 1  

- - - 
t = x x [b b (a  a a + a8a4) + b (a a + a8a2)l 2 2 1  8 1  8 4 2  8 1  8 4  

- + x x [b b (a a a + g8a4) + b E (a a + a8a4)1 2 1  8 1  8 2 1  8 1  8 2  

- 
w = b l @ a l = b a  + E a  1 1 1  1 1  

- - - -  - -  - - -  
w = x x [ b b b a  + b ( a a  + a a a  + a a a a  + a a a  + a a a )  

2 2 1  8 4 2 2  2 8 4  8 2 1  8 4 2 1  8 4 2  8 4 1  

- + E b (a a + a8a4a2 + a8a4) 8 4  8 4  
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- -  - - 
+ b b ( a a a  + a a  + a a  + a a a )  

8 4  8 4 1  8 1  8 2 1  2 1  

- -  
+ b c ( a a a  + a a a  + a a  

8 1  8 4 2  8 4 1  8 4  

- - -  + x x [b b b (3; a + a2al) + b2( 2 1  8 4 2  2 1  

- -  - -  - - -  + E8b4(aga2al + a4a2al + a a + a a a a ) 8 4  8 4 2 1  

- + bsbl(g4a2 + a8a4 + a8a4a2) 

- -  - 
+ b 6 ( a a a  + a 8 a 4 a l + a a a  + a a a ) ]  

8 1  8 4 1  8 2 1  8 2 1  

- - -  - -  - - -  - 
w = x x [b b b (a  a a + a a + a a a ) + b2(a8 + a8a4) 4 2 1  8 4 2  4 2 1  4 2  8 4 1  

- - -  - -  - -  
+ b b ( a a a  + a  + a a a ) + b b ( a a a  + a a  + a a a )  8 4  4 2 1  8 4 2 1  8 1  8 4 2  4 2  8 4 1  

- - -  + b E (a a a + a8a4a2 + a a a ) I  8 1  8 4 1  8 4 1  

- - -  - -  
+ x x [ b b b a  + b a ( a  + a 2 + a 4 ) + b ( a a  + a a a )  2 1  8 4 2 4  2 8  1 2 8 4  8 2 1  

- - -  - - -  + b b ( a  + a 4 ) + b b ( a a a  + a a a  + a a a )  8 4  8 8 1  8 4 1  8 4 1  8 4 2  

- - - -  - - -  
w = x x [ b b b a  + b ( Y a  + a a a  + a a a  + a ; )  

8 2 1  8 4 2 8  2 , 8 4  8 2 1  8 2 1  8 4  

- - -  - - -  
+ E b ( a a  + a 4 a 2 ) + b b ( a a a  + a a a  + a a a >  8 4  8 4  8 1  8 4 2  8 4 2  8 4 1  

+ b8El + a8a2al) 1 

- - - -  - + x x [b b b a (a + a + al) + b2(g8a4 + a a + a a ) 2 1  8 4 2 8  4 2 8 2  8 4  

- - - -  - - -  
+ E b ( a a a  + a S a l + a 8 a 4 ) + b b ( a a a  + a a a  + a a a )  8 4 2  8 4  4 2 1  8 1  8 4 2  8 4 1  

- - -  + b E (a a a + a8a4a2 + a8a4al)l 8 1  8 4 2  
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4. Logic Design for C e l l  D 

04 

O 2  w8 
01 w4 

w2 
W I  

TRUTH 

Fig. 66. 1/0 PINS OF CELL D. 

TABLE OF CELL D 
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Boolean Equations: 

- - 
w = albl + albl 1 

- -  - - - -  - -  
w = b b a  + E b C a a a  + a a a a  + a a ( a a  + a 2 a l ) 1  2 2 1 2  2 1  8 2 1  8 4 2 1  8 4  2 1  

- - -  - - -  
+ b b ( a a a  + a a a  + a a a  + a a a )  2 1  8 2 1  4 2 1  8 2 1  4 2 1  

- - - 
w = b E a  + E b ( a a  + a a a  + a a a  + a a a )  8 4 1  4 2 1 4  2 1 8 4  4 2 1  8 4 2  

- - - -  - 
+ b b ( a a a a  + a a a  + a a a )  2 1  8 4 2 1  4 2 1  8 4 2  

- - - -  - - - -  
w = b b a + b b (a a a + a a a + a a a a ) + b2bl(a8a4a2al + as) 8 2 1 8  2 1  8 4 1  8 4 2  8 4 2 1  

5 .  Logic Design for C e l l  E 

0 2  
0 1  

b 2  w2 
b l  W I  

Fig. 67. 1/0 PINS OF CELL E. 
c 2  
C I  

d 2  
d l  

TRUTH TABLE FOR CELL E 
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Boolean Equations: 

'8 
a 4  
02 
O 1  

b 2  
b l  

- - -  - - -  - -  - - -  
w = a b c d  + a b c d  + a b c x  + a b e d  2 1 1 1 1  1 1 1 1  1 1 1 1  1 1 1 1  

CELL , w8 F 
-w4 - w2 
- W I  

b 

6. Logic Desim for Cell F (Half Divider) 

Fig. 68. 1/0 PINS OF CELL F. 
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TRUTH TABLE FOR CELL F 

0 8 0 1  0 0  

0 0 1 0  0 0  

0 0 1 1  0 0  

0 1 0 0  0 0  

0 1 0 1  0 0  

0 1 1 0  0 0  

0 1 1 1  0 0  

1 1 1 1  0 0  

1 1 1 0  0 0  

1 1 0 1  0 0  

1 1 0 0  0 0  

l o l l  0 0  

1 0 1 0  0 0  

1 0 0 1  0 0  

0 0 0 0  0 1  

0 0 0 1  0 1  

0 0 1 0  0 1  

0 0 1 1  0 1  

0 1 0 0  0 1  

0 1 0 1  0 1  

0 1 - 1 0  0 1  

I O  1 1  1 0 1  
, 

1 0 0 0 0  0 0 ~ 0 0 0 0  i 
0 0 0 0  

0 0 0 1  

0 0 0 1  

0 0 1 0  

0 0 1 0  

0 0 1 1  

0 0 1 1  

0 0 0 0  

1 1 1 1  

1 1 1 1  

1 1 1 0  

1 1 1 0  

1 1 0 1  

1 1 0 1  

0 0 0 0  

0 0 0 1  

0 0 0 1  

0 0 1 0  

0 0 1 0  

0 0 1 1  

0 0 1 1  

0 1 0 0  

Boolean Equations: 

- - -  - -  - - -  
w - b b ( a a  + a a a  + a a a ) + b b ( a a a  + a a a  + a a a  + a a a )  1- 2 1  8 2  8 2 1  8 2 1  2 1  8 2 1  8 2 1  8 4 2  8 2 1  

- - - -  
+ b b ( a a  + a a a  + a a a a )  2 1  2 1  8 2 1  8 4 2 1  

- - - 
w = b b ( a a  + a 8 a 4 a l + a a a  + a a a a )  2 2 1  8 4  4 2 1  8 4 2 1  
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- -  - - 
+ c b ( a a a  + a a a  + a a a  + a a a  + a a a a )  2 1  4 2 1  8 4 2  8 4 2  8 4 2  8 4 2 1  

+ b b ( a a  + a a  + ' ; ; a a )  2 1  8 4  4 2  8 4 1  

+ E b ' ; ; a a a  4 2 1 8 4 2 1  = w 8  
\ 
- - - - - 

w = c E  (a a + a a + a8a2) + b b (a a a + a8a4) + b b a 
8 2 1  8 4  8 1  2 1  8 4 2  2 1 8  

7. Overflow (or Underflow) Detect ion 

TRUTH TABLE FOR OVERFLOW INDICATION 
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Boolean Functions: 

- - - 
L l z . = z z  1 2 1  = .42.41{'38 r38r34r32 + r  38r34r32r31{'28 + r28r24r22 

- 
+ r28r24r22r21 ['18 r18r14r12 + r18r14rll 

- -  
+ r18r14r12rll 

- - -  - - -  
Azi = =2'1 = .42.41 r38 -I- r38r34r32 -I- r38r34r31 f 

- -  - - -  - w -  

-I- '38.34.32.31 [.28 + r28r24r22 i- r28r24r21 
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A p p e n d i x  C 

LOGIC DESIGN OF THE DIGITAL SUMMING ELEMENT 

SET # I  

SET # 2  

SET #3 

}s”M 

Fig. 69. INTERNAL BLOCK STRUCTURE OF DIGITAL SUMMING ELEMENT. 

TRUTH TABLE C-1 FOR BLOCK (1) 

I c c = 1 1 , l O  I c c = 11,Ol 
2 1  2 1  

c2c1 = 11,10,01 

D4 D2 Dl b4 b2 bl B B B  4 2 1  I a 2 a l  A2 A1 1 4 2 1  d d d  

0 0 0  0 0 0  

0 0 1  0 0 1  

0 1 0  0 1 0  

0 1 1  0 1 1  

1 1 1  1 1 1  

1 1 0  1 1 0  

1 0 1  1 0 1  

0 0  0 0  

0 1  0 1  

1 1  1 1  

0 0 0  0 0 0  

0 0 1  0 0 1  

0 1 0  0 1 0  

0 1 1  0 1 1  

1 1 1  1 1 1  

1 1 0  1 1 0  

1 0 1  1 0 1  

121 SEL-68-084 



c c  2 1  = o o  c 2 1  c =00,10 c 2c = 00,Ol 

b4 b2 bl B4 B2 B1 a2 al A2 Al d4 d2 dl D4 D2 Dl 

0 0 0  0 0 0  0 0 0  0 0  0 0  0 0 0  

0 0 1  1 1 1  0 1  1 1  0 0 1  1 1 1  

0 1 0  1 1 0  1 1  0 1  0 1 0  1 1 0  

1 0 1  0 1 1  1 0 1  0 1 1  

1 1 1  0 0 1  1 1 1  0 0 1  

1 1 0  0 1 0  1 1 0  0 1 0  

1 0 1  0 1 1  1 0 1  0 1 1  

TRUTH TABLE C-2 FOR BLOCK (2) 

. 

1 A2 Al B4 B2 B1 S 8 S 4 S 2 S 1 1  

0 0  0 0 0  0 0 0 0  

0 0  0 0 1  0 0 0 1  

0 0  0 1 0  0 0 1 0  

0 0  0 1 1  0 0 1 1  

0 0  1 1 1  1 1 1 1  

0 0  1 1 0  1 1 1 0  

0 0  1 0 1  1 1 0 1  

0 1  0 0 0  0 0 0 1  

0 1  0 0 1  0 0 1 0  

0 1  0 1 0  0 0 1 1  

0 1  0 1 1  0 1 0 0  

0 1  1 1 1  0 0 0 0  

0 1  1 1 0  1 1 1 1  

0 1  1 0 1  1 1 1 0  

1 1  0 0 0  1 1 1 1  

1 1  0 0 1  0 0 0 0  

1 1  0 1 0  0 0 0 1  

1 1  0 1 1  0 0 1 0  

1 1  1 1 1  1 1 1 0  

1 1  1 1 0  1 1 0 1  

1 1  1 0 1  1 1 0 0  

B o o l e a n  E q u a t i o n s :  

- - -  
B = (C + C1) b4 + C 2 1 4  C b (b 2 + bl) 4 2 

- -  
B2 = (C2 + C1) b2 + C C (E b + E b ) 2 1  1 2  2 1  

- -  
B1 = (C2 + C1 + C2C1) bl = bl 

- -  
A = C a  + C a a  

2 1 2  1 2 1  

A = ~ a  + E a  l l = a l  1 1 1  
- -  

D = C d  + C d ( d  + d 2 )  4 2 4  2 4  1 

D2 = C d + (2 d + d2dl) 2 2  2 2 1  

1 D = d  1 

- -  
s8 = C~C~CA,A,B, + ;;~,A,B,B~B~ + T i 2 ~ 1 ~ 4 B 2 ~ 1  

+ %A1B4E2B, + A2A1B4B21 

S4 = S8 + E2A1 + B B 1 C2Cl 4 2 1  

= c 2 1 5 2 1 2  c 1- X B + Zi2~1~2El + X 2 ~ l E 2 ~ 1  

+ A2A1g4z2gl + A2A1B2B11 

= C C [A + ~ , B , ]  s1 2 1  1 1  
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TRUTH TABLE C-3 FOR BUILDING BLOCK (3) 

D D D  S S S S  I 4 2 1 8 4 2 1 w8 w4 w2 wll D D D  S S S S  1 4  2 1 8 4 2 1 w8w4w2 wll 

0 0 0  0 0 0 0  0 0 0 0  

0 0 0 1  0 0 0 1  

0 0 1 0  0 0 1 0  

0 0 1 1  0 0 1 1  

0 1 0 0  0 1 0 0  

1 1 1 1  1 1 1 1  

1 1 1 0  1 1 1 0  

1 1 0 1  1 1 0 1  

1 1 0 0  1 1 0 0  

0 0 1  0 0 0 0  0 0 0 1  

0 0 0 1  0 0 1 0  

0 0 1 0  0 0 1 1  

0 0 1 1  0 1 0 0  

0 1 0 0  0 1 0 1  

1 1 1 1  0 0 0 0  

1 1 1 0  1 1 1 1  

1 1 0 1  1 1 1 0  

1 1 0 0  1 1 0 1  

0 1 0  0 0 0 0  0 0 1 0  

0 0 0 1  0 0 1 1  

0 0 1 0  0 1 0 0  

0 0 1 1  0 1 0 1  

0 1 0 0  0 1 1 0  

1 1 1 1  0 0 0 1  

1 1 1 0  0 0 0 0  

1 1 0 1  1 1 1 1  

1 1 0 0  1 1 1 0  

0 1 1  0 0 0 0  0 0 1 1  

0 0 0 1  0 1 0 0  

0 0 1 0  0 1 0 1  

0 0 1 1  0 1 1 0  

0 1 0 0  0 1 1 1  

0 1 1  1 1 1 1  0 0 1 0  

1 1 1 0  0 0 0 1  

1 1 0 1  0 0 0 0  

1 1 0 0  1 1 1 1  

1 1 1  0 0 0 0  1 1 1 1  

0 0 0 1  0 0 0 0  

0 0 1 0  0 0 0 1  

0 0 1 1  0 0 1 0  

0 1 0 0  0 0 1 1  

1 1 1 1  1 1 1 0  

1 1 1 0  1 1 0 1  

1 1 0 1  1 1 0 0  

1 1 0 0  1 0 1 1  

1 1 0  0 0 0 0  1 1 1 0  

0 0 0 1  1 1 1 1  

0 0 1 0  0 0 0 0  

0 0 1 1  0 0 0 1  

0 1 0 0  0 0 1 0  

1 1 1 1  1 1 0 1  

1 1 1 0  1 1 0 0  

1 1 0 1  1 0 1 1  

1 1 0 0  1 0 1 0  

1 0 1  0 0 0 0  1 1 0 1  

0 0 0 1  1 1 1 0  

0 0 1 0  1 1 1 1  

0 0 1 1  0 0 0 0  

0 1 0 0  0 0 0 1  

1 1 1 1  1 1 0 0  

1 1 1 0  1 0 1 1  

1 1 0 1  1 0 1 0  

1 1 0 0  1 0 0 1  
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- - -  - -  
w 8 = D 4 2 1 8  D D S + D 4 2 1 8  D D S (E 2 + El) + D4D2ElS + D4D2 

- - -  - -  
+ D ~ D ~ D ~ ( s ~ ~ ~ ~ ~  + s8) + D ~ D ~ ~ T , ( S ,  + s4s2) + ~~5~ 

w4 = D4E2'iil(S8 + S4's,'s,) + S4E2D1(Z8E4S2S1 + S4g2gl + S8S4gl + S8S4g2) 

- -  + D4~2D1 (Z8E4s2 + s4E2El + s8s4E2> + E 4 ~ 2 ~ 1  E8(s4 + s2 + sl) + S,S,S,I 

+ D4D2D1(S4S2S1 + S8> + D4D2El(S8S4S2 + S8S4S2) 

+ D E D (S S S 

- - -  - - -  

- - -  - - -  
+ S8S4S1 + S8S4S2Sl) 4 2 1  8 4 2  

- 
w2 = D4E2El(E8E4S2 + S8S4S2) + E 4 ~ 2 D 1 ( ~ 8 ~ 4 ~ 2 S 1  + Z8g4S2z1 + S8S4S2gl 

.t S8S4E2S1) + E4DzDl(E8S4E2 + E8S2El + S8S4Ez) 

- -  - -  + iT4~2~1(E8E2E1 + s8s4s2s1 + s8s4s2s1 + s8s4s2sl~ 
- -  - -  

+ D4D2D1(g8F2E1 + S8S4S2S1 + S8S4S2S1 + S8S4S2Sl) 

- - -  + D ~ D ~ D ~ ( S ~ S ~ S ~  + s8s2sl + s8s4F2) 

+ D4'ii2Dl(E8T4S2S1 + ~ 8 E 4 S z ~ l  + S8S4S2g1 + S8S4g2S1) 

w = D 5 i- DIS1 1 1 1  
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Appendix D 

SIMULATION OF SINUSOIDAL RESPONSE OF THE TRANSFER FUNCTION G(s) = l/(s+l) 

The program has been written in extended ALGOL. It has been run on 

B5500 machine at Stanford University. 

BEGIN 

REAL Z,YTRUE,X,XX,XXX,YAPPROX; 
INTEGER M,N,P,XREG, Y1REG,DX,DY,DYY,YREG,RREGyT,DTYTFINAL; 
READ (M,N,TFINAL); 

P+2*N; 
YREG+YlREG+XREG+RREG+O; 

FOR T+l STEP 1 UNTIL TFINAL DO 
BEGIN 
Z+T/P; 
X+ (P-1) XSIN (Z) ; 
XX+X-XREG; XXX+ENTIER(ABS(XX)); 

IF 

IF ABS (RREGjkM AND RREG>O THEN 

XX<O THEN DXc-XXX ELSE DX+XXX; 
XREW XREWDX; 

BEGIN DY+l; RREGcRREG-M 
END ELSE IF ABS (RREG) >M AND RREG<O THEN 

BEGIN DY+-1; RREWRREWM 
END ELSE DY+O; 
DYY+DX-DY; 
YlREWYlREWDYY; 
RREGCRREWY 1REG; 

YREWYREWDY ; 
YTRUEcPxO. 5X(EXP (-Z)+SIN(Z)-COS (Z) ) ; 
WRITE (T,XREG,YlREG,RREG,YREG,YTRUE); 
END 
END 

DATA CARD 
256.0 8.0 1500 
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Appendix E 

U N I T  STEP RESPONSE O F  G ( s )  = l/(s+l) SIMULATION ON B 5 5 0 0  MACHINE 

BEGIN 

REAL M,N,P,Zl ,ZZ,WREG,YREG,DY,DW,X2,DX,DX,DELX,RREG,T,TFIN~;  
READ (M,N,TFINAL) ; 

P+Z*N; YREG+YYREG+RREG+O; 
FOR Ttl STEP 1 UNTIL TFINAL DO 
BEGIN 

I F  W l  THEN 
BEGIN DX+(P-1) 
END ELSE D X t O ;  
I F  RREG>M THEN 
BEGIN D&l;  R R E W R R E G M  
END ELSE DYtO;  

RREWRREDI-YYREG; YREGcYREDI-DY; 
WRITE (T,YREG) 
END 

Z l + T / P ;  X l + ( P - 1 ) ;  

DYY+DX - DY; WREG+YYREG+DYY; 

END 
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Appendix F 

I '  

APPROXIMATION OF THE IDEAL LOW-PASS FILTER 

-PASS BAND*+SX)P BAND- 

In the frequency domain approximation, the principal problem is to 

find a rational function G(s) whose magnitude IG(jw) 1 approximates 

the ideal low-pass characteristic according to a predetermined error 

criterion. Two approximations are discussed below. 

1. The Maximally Flat Low-Pass Filter Approximation 

The equation, 

is known as the nth order Butterworth or maximally flat low-pass filter 

response and is an approximation of Fig. 7 0 .  

Fig. 70.  IDEAL LOW-PASS FILTER CHARACTERISTIC. 

The poles of this function are defined by 

n 
2 1 +  ( - s )  = o  

and their locations are 

2 k - 1  -) fi n even 
'k = exp(j 
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2k 71 
Sk = exp (j F) n odd 

1.0000 

or 

n 

1 

2 

3 

4 

5 

6 

k = 1 , 2 ,  3 ,  ..., 2n 2 k + n - 1  71 

sk = exp(j n 2 

1 

1.0000 

1.4142 

2.0000 

2.6131 

3.2361 

3.8637 

a 

These poles, thus defined, are located on a unit circle in the s-plane 

and are symmetrical with respect to both the real and imaginary axes. 

To form the function G(s) from the given ]G(~LJ) I , the right-half 

plane poles are rejected, and the left-half plane poles form the all- 

pole function, 

2 

1 
2 n + ... + a s 

G(s) = 
1 -k a s + a2s 1 n 

The coefficients of the denominator polynomials of G(s), some- 

times called Butterworth polynomials, are tabulated in Table 4.  

Table 4 

COEFFICIENTS OF THE DENOMINATOR POLYNOMIALS OF G(s) 

2 .  

2 a 

1 0000 

2.0000 

3.4142 

5.2361 

7.4641 

3 a 

1.0000 

2.6131 

5.2361 

9.1416 

4 a 

1.0000 

3.2361 

7.4641 

Chebyshev or  Equal-Ripple Approximation 

The squared magnitude form 

5 a 6 a 
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is an equal-ripple approximation of Fig. 70, where Cn(w) is the n th 
order Chebyshev polynomial and E < 1 is a real constant. These poly- 

nomials are defined in terms of the real variable z by 

c (z) = COS bcos -1 z) 
n 

Let z = cos w, then 

Cn(w) = cos nw 

and a recursion formula can be found as 

with 

The poles of this equal-ripple form of response can be found as 

k Sk = 0 + j w  k 

2 k - 1  fi where CT = k sinh a sin - 
k n 2  

k n 2  

a = - sinh - 

2 k - 1  fi 
w = cosh a cos - k = 1,2,3, ..., 2n 

1 -1 1 
n E: 

Again, the right-half plane poles are rejected. 
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Appendix G 

ERROR ANALYSIS OF THE MODIFIED TRAPEZOIDAL INTEGRATION 

Using the error-analysis methods given by Nelson LRef.281, a com- 

parison of error results between the classical trapezoidal integration 

and the proposed modified trapezoidal integration has been carried out 

in the following manner. 

1. Trapezoidal-Integration Error 

For trapezoidal integration of poles not at the origin, say s = -CX, 

the function to be integrated is Y(s) = l/(s + a ) ,  and in z-transform, 
Y(z) = Y (5) = 1/(1 - az ). The real solution after integration should 

be R ( s )  = Y(s)/s = (l/CX)[(l/s) - l/(s + a)], or in z-transform, 

R(z) = R*(s) = ( l /a )  [l/(l - z-') - 1/(1 - az 
fect integration of the digital computer, the solution yields 

3c -1 

-1 )I. Because af the imper- 

where a = exp(-aT) . 
The error in the trapezoidal integration is 

3 1 - 1 u(Z) = R(z) - R(z)' = [$ - T(l a)] [ -1 -1 2(1 - a) 1 - z  1 - az 

In the time domain, 
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Here, t h e  expression bl can be expanded t o  

1 + .... a T + O + - - -  1 1 
a 2*3! 3! 51 

(GT) bl = - - T[& + 0 + - 

a? 3 4  
+ .... 2- = - - + -  a T  a T  

2.31 31 51 2.33 

2 As t -+a, e r r o r  tends t o  go t o  a T  /2*3!  i n  magnitude. 

2. Modified Trapezoidal-Integrat ion Error  

For modified t rapezoida l  i n t e g r a t i o n ,  t h e  computer y i e lds  

H e r e ,  t h e  e r r o r  i s  R(z) - R(z)" = U(z)': 

In  t h e  t i m e  domain, 

1 T(3a-1) 
+ "I[*] - [$ - 2 (1-a) 

1 T 
a 1 - a  

u ( t ) '  = - - - 

1 1 T(3a-1) 
2 (1-a) 

1 T T 
a 1 - - a  1 - a 

- - - - - -  - 
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- TC3 exp(-aT)-l] 
2 Cl-exp(*T)] g( t )  

where 

= 1  i f  t = O  

3. Error Comnarison 

A t  t = 0,  ~ ( 0 )  - ~ ( 0 ) '  = -T + T = 0 

For t > 0,  u ( t )  - u ( t ) '  = T e x p ( G t )  

A s  t -+", Cu(t) - u ( t ) ' l l t  --j = o  
The g r e a t e s t  d i f f e r e n c e  occurs a t  t = T, t h e  f i r s t  sample t i m e .  
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These results state that the modified scheme is almost as good as the 

trapezoidal integration. The maximum-error bound is T exp(-UT). For 

very large t, the integration differs only by a negligibly small quan- 

tity T exp(-anT), where n >> 1 is a very large integer. 
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Appendix H 

APPLICATION OF INCREMENTALS TO COMPUTER REALIZATION 
OF TRANSFER FUNCTIONS 

The existing realization method [Refs. 3 and 141 for an integrator 

of trapezoidal rule, for example, can be expressed, in difference-equation 

form, as 

T y(nT) = yC(n - 1)TI + z {u(nT) - uC(n - 1)TI) (H. 1) 

where y(nT) is the integration at t = nT from t = 0, u(nT) is the 

coordinate of the curve to be integrated at t = nT, and T is the sam- 

pling interval. 

In terms of the z-transform, Eq. (H .1 )  becomes 

-1 T -1 Y(Z) = z Y ( z )  + 5 CU(z) + z U(z)] (H.  2a) 

or 

Y ( z )  T 1 + z-' 
-1 

- - -  
1 - 2  U(z) - 2 (H.  2b) 

The implementation of Eq. (H.2b) by using delay and summing elements is 

shown in Fig. 71. On the other hand, to apply the incremental idea, 

Eq. (H.l) can be rewritten by substituting n - 1 for n, as 

Because the only data available will be incremental data, subtracting 

Eq. (H.3) from Eq. (H.2a) will obtain 



Fig. 71. IMPLEMENTATION OF E&. (H.2) BY USING DELAY AND SUMMING 
ELEMENTS. 

Incremental data can be defined as 

Ay(iT) = y(iT) - yC(i - 1)TI i being integers 

Au(iT) = u(iT) - u[(i - 1)Tl 

thus, Eq. (H.4) can be rewritten as 

In z-transform, 

or 

(H. 5a) 

(H. 5b) 

(H. 7a) 

(H. 7b) 

The implementation of Eq. (H.7b) is found to be exactly as that of 

Fig. 71, with Y ( z ) ,  U ( z )  changed to AY(z), AU(z). 

Comparing Eqs. (H. 1) with (H.6) and (H.2) with (H.7), it can be 

seen that, with the same configuration of realization, the two methods 

differed only in dealing with either the whole or incremental signal. 

It is well known that the precision of the analog-to-digital converter. 
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is dependent on the number of quantization levels; that is, to represent 

the same analog quantity, it depends on the number of bits of the digital 

elements. Therefore, with the same number of digital bits available, a 

small signal can be represented more accurately than can a large signal. 

For example, with five binary bits available, a small signal of 31 mV and 

a large signal of 315 mV can be represented as 11111 V) and 11111 

V), respectively, whereby the last digit of the 315 mV is rounded 

off. Also, the analog-to-digital conversion time is usually less for 

small signals. 
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